《圆柱的体积》教学设计

时间:2025-09-07 08:17:42 教学设计 我要投稿

《圆柱的体积》教学设计

  作为一名人民教师,就难以避免地要准备教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。写教学设计需要注意哪些格式呢?以下是小编收集整理的《圆柱的体积》教学设计,仅供参考,欢迎大家阅读。

《圆柱的体积》教学设计

《圆柱的体积》教学设计1

  教学内容:

  冀教版小学数学六年级下册第32—34页。

  教学目标:

  知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

  过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。

  情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。

  教学重点:

  探索并掌握圆柱体积公式,能计算圆柱的体积。

  教学难点:

  圆柱体积公式的推导过程及简单应用。

  教具准备:

  两个不易直观比较体积大小的圆柱桶,探索体积的课件

  教学时数:

  一课时

  教学过程:

  一、情景导入

  1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?2.学生观察思考后回答。

  生:亮亮和爷爷的生日蛋糕都是圆柱形的。

  生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。

  3.出示两个圆柱体,学生观察、猜想。

  师:同学们这两个圆柱体,哪个大些?(说出理由)生:我认为第一个大一些。生:我认为第二个大些。生:要是能算出体积就好了?

  师:是啊,有时我们观察到的大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的`体积” 3.揭示并板书课题:圆柱的体积

  (设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)

  二、合作探究

  (一)引导回忆

  1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?2.学生回忆后回答。

  3.教师结合学生的回答适当的板书。板书:长方体的体积=底面积×高生:我还想知道怎样求圆柱体积的大小?

  师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。

  (设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。

  (二)推导、论证“圆柱的体积” 1.引发思考猜想

  师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。

  生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢?

  师:同学猜想的很有道理。

  师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。 2.师生合作推导验证

  教师用课件演示,学生观察思考。

  师:把圆柱体平均分成16份、32份??同样可以拼成一个近似长方体。请同学们观察两次等份的异同。学生观察思考后回答

  生:相同点是都可以拼成一个近似的长方体。

  生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。

  3.同学们观察很仔细,请你们想想,拼成的近似长方体和圆柱体有什么关系?你发现了什么?

  4.小组同学讨论后汇报结果,同时板书。

  生:(1)把圆柱拼成长方体后,形状变了,体积不变。

  板书:长方体的体积=圆柱的体积

  (2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

  师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。

  板书:圆柱的体积=底面积×高

  ,用字母表示V=Sh

  师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。三、出示例题:一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米?1.学生读题试算。 2.集体订正。

  四、应用与拓展

  1.完成教材第34“试一试”。(1)学生仔细看图,明确题意。(2)学生自主完成后,全班交流。

  五、课堂总结

  本节课你有什么收获?还有什么疑问?附:板书

  圆柱的体积

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  教学反思:

  本节课的教学体现了:

  一、利用迁移规律引入新课,为学生创设良好的学习情境;

  二、遵循学生的认知规律,引导学生观察、思考、猜想、论证,调动学生多种感观参与学习;

  三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

《圆柱的体积》教学设计2

  课题

  圆柱的体积

  教学课时

  第5课时

  教学目标

  知识目标

  经历圆柱体积计算公式的推导过程,理解并掌握圆柱体积计算的方法,并能正确计算圆柱的体积。

  技能目标

  能运用圆柱体积计算方法,解决有关的实际问题,发展学生的实践能力。

  情感态度

  与价值观

  进一步丰富对圆柱的认识,提高空间观念。

  教学重点

  圆柱体积计算

  教学难点

  1、圆柱体积计算方法的推导。

  2、借助教具演示,弄清圆柱与长方体的关系。

  课前准备

  圆柱体积公式推导教具

  教学过程与方法

  个性修改

  预习检测

  出示图片:

  师:同学们,你们知道什么叫物体的体积吗?这些图形中,哪些图形的体积你会计算呢?

  学生展开交流,明确体积的含义,复习有关长方体和正方体体积的计算公式。

  自学探究

  1、探究例5:

  (1)猜一猜

  ①圆柱的体积可能怎样计算?

  ②计算圆柱的体积需要哪几个条件?

  在猜想交流活动中,学生很可能会借助长方体、正方体体积的计算方法,推断出圆柱的体积计算方法。

  得出:圆柱的体积等于底面积乘高。

  (2)演示教具

  ①取出圆柱体模型

  ②将圆柱切成两半

  ③分别将两半均分成多个小块

  ④将两半模型拼成一个近似的长方体(为什么是近似的长方体?怎样可以更接近长方体?)

  (3)归纳公式

  ①拼成的长方体的体积与圆柱的体积有什么关系?

  ②长方体的底面积与高分别与圆柱的底面积、高有什么关系?

  ③长方体的体积等于什么?圆柱呢?

  学生回答,教师板书:

  圆柱的体积=长方体的体积

  =底面积×高

  圆柱的体积=底面积×高

  ④如果用v表示圆柱的体积,s表示底面积,h表示高,那么圆柱的.体积计算公司应该是怎样表示?

  板书:v=sh

  师

  生

  互

  动

  指导学生完成“做一做”

  1、先让学生说说题意,明确求圆柱的体积需要具备什么条件。

  2、学生独立完成并反馈。

  3、拓展延伸:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以怎样表示呢?

  ①同桌互相交流,然后全班反馈。

  ②教师根据学生的回答,板书:v=πr2h

  双基练习

  指导学生完成练习三的第1~2题

  1、第1题:先让学生独立将表格填写完整,然后全班反馈。

  2、第2题:先让学生独立完成,然后全班反馈,反馈时要让学生明确:要求圆柱的体积必须具备两个条件,即圆柱的高和圆柱的底面积。

  预习设计

  解决问题:

  1、一个圆柱形石柱、底面积是4.8平方米,高是1.2米,这块石柱的体积是多少立方米?

  2、一个圆柱形水池,占地面积8.4平方米,深3米。这个水池最多能蓄水多少立方米?

  3、一个圆柱形铁罐的容积是1升,高是12厘米。铁罐的底面积大约是多少平方厘米?

  板书设计

  圆柱的体积

  圆柱的体积=长方体的体积

  =底面积×高

  圆柱的体积=底面积×高

  =sh

  =πr2h

  教学反思

《圆柱的体积》教学设计3

  教学内容:

  人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。

  教学目标:

 1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

  2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

  3、探索和解决问题,体验转化及极限的思想方法。

  4学会由未知向已知转化的学习方法。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:掌握圆柱体积公式的推导过程。

  教学方法:尝试指导法

  学法指导:猜想→讨论→操作→概括→尝试→辨析→总结

  教学用具:圆柱的体积公式演示课件。

  学习用具:准备推导圆柱体积计算公式所用的学具。

  教学过程:

一、激疑引入

  同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。

  二、探究新知

  1、猜想

  现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?

  2、表扬鼓励,实践迁移

  (1)有同学能把圆柱转化成我们已学过的`立体图形,来计算它的体积,真是既聪明又能干!

  让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)

  (2)操作:学生操作学具,切割拼合。

  (3)感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。

  (4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  (5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?

  (6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】

  (7)概括总结

  ①让学生试着总结公式;

  ②老师在学生总结的基础上用课件出示

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱体的体积=底面积×高

  用字母表示:v=sh

  3、运用新知,尝试解答

  [做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  (1)尝试:让学生理解题意,自己尝试解答。

  (2)展示:根据v=sh可得:75×90=6750(cm3)

  (3)讲评并强调:计算体积时结果应用体积单位。

  (4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?

  让学生独立思考,写出计算公式,再相互交流。

  得到:v=πr2h

  [完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?

1、教师引导学生:要回答这个问题,先要计算出杯子的容积。

  2学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。

  三、巩固练习

 1、完成下表。

  底面积/ m2

  高/m

  圆柱的体积/ m3

  7

  3


  5.6

  4


  2一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?

  四、全课小结

  同学们,今天我们学习了什么知识?你还有什么不懂的问题?

  五、布置作业(练习三第2、3题)

  板书设计

  圆柱的体积

  圆柱转化近似长方体

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱的体积=底面积×高

  V柱=sh

  V柱=πr2h

《圆柱的体积》教学设计4

  一、课前系统部分

  (一)、课标分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。

  (二)、教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  (三)、学生分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  (四)、教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的'能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  (五)、教学重难点:

  1、教学重点:掌握圆柱体积的计算公式。

  2、教学难点:圆柱体积计算公式的推导。

  (六)、教学策略

  介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。

  (七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。

  二、课堂系统部分——教学过程

  (一)、创设情境,引起猜想:

  1、激发兴趣:圆柱体转化成近似长方体。

  课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?

  生:体积、高。

  (设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)

  师:揭示课题:圆柱的体积。

  (二)、推导圆柱体积计算公式

  师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?

  师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就

  学生回答:就越接近于长方体了。

  师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)

  师:通过观察,你知道了什么?

  生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。

  (三)、练一练:

  1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

  生:完成后小组内交流。

  2、师课件出示:判断题

  一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?

  师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)

  ②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)

  生:小组讨论,学生汇报并说出理由。

  师:点击出现:“√” 。

  师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。

  (四)、两个圆柱体积计算公式的比较。

  师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。

  师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)

  小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?

  生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。

  (五)、拓展训练练习一:填表

  师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。

  练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?

  生小组交流完成。

  (六)、小结

  通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。

  (七)、板书设计圆柱的体积

  圆柱的体积=底面积×高=Sh=πrh

  三、课后系统部分——教学后记

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

《圆柱的体积》教学设计5

  教学准备

  1.教学目标

  1.加强实践操作,尽量让学生自己动手,亲历圆柱体积的转化过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2.加强习题设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

  3.加强空间观念的培养,突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

  2.教学重点/难点

  教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱体积。

  教学难点:理解圆柱体积公式的推导过程。

  3.教学用具

  4.标签

  《圆柱的体积》教学设计教学过程

  一、情境激趣,导入新课。

  同学们,让我们先来做一个实验:

  1、师拿一个长方体和一个正方体容器,说说怎样计算它们的体积,接着往正方体容器中倒入一定量的水,然后拿出一个圆柱体准备投入水中让学生观察:有什么现象发生?由这个现象你想到了什么?

  2、提问:你能用一句话说说什么是圆柱的体积吗?(板书课题)

  [设计意图:通过把圆柱投入水中,水面上升,使学生直观感知圆柱体积大小的概念。]二、自主探究,学习新知

  (一)设疑

  1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

  2、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式就好了。

  [设计意图:通过追问大厅内圆柱体积等问题,使学生意识到前面方法的局限性,使其产生思维困惑,激发学生探究圆柱体积计算方法的欲望,从而进入最佳学习状态。]

  3、怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。

  请大家想一想:在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的.

  (学生回答后,把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。]

  (二)猜想

  怎样来计算圆柱的体积呢?

  讨论:能不能把圆柱转化成我们已学过的'立体图形,来计算它的体积?

  引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  (三)验证

  1、为了证实刚才的猜想,我们可以通过实验来验证。

  2、学生利用学具分组讨论以下问题:

  圆柱体可以转化成哪种立体图形?

  它又是怎么转化成这种图形的?(小组讨论后汇报交流)

  把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

  3、指名两位学生上台用圆柱体积学具进行操作,把圆柱转化为近似的长方体。

  4、根据学生操作,教师再次课件演示圆柱转化成长方体的过程,并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

  [设计意图:合理运用多媒体技术,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近于长方体”,这里转化思想和极限思想得到应有的体现,同时也渗透了以直代曲的辩证唯物主义观点,发展了学生的空间观念。]

  5、通过上面的观察,小组讨论:

  圆柱与所拼成的近似长方体之间有什么联系?分四人小组展开讨论.

  (1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

  (2)长方体各部分之间与圆柱体有怎样的关系?

  (3)你认为圆柱的体积可以怎样计算?

  生汇报交流,教师根据学生讲述适时板书。

  近似长方体的体积=圆柱的体积

  近似长方体的底面积=圆柱的底面积

  近似长方体的高=圆柱的高

  试着根据圆柱与近似长方体的关系,推导公式:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  用字母表示计算公式:

  V=Sh

  6、同桌相互说说圆柱体积的推导过程。

  思考:

  求圆柱的体积必须具备哪两个条件?

  7、完成做一做:一根圆柱形木料,底面积为75平方厘米,长是90厘米。它的体积是多少?(生练习,展示并评价)

  8、求圆柱体积要具备什么条件?

  [设计意图:动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。]三、实际应用

  1、反馈练习:

  底面积是10平方米,高是2米,体积是( )

  底面积是3平方分米,高是4分米,体积是( )

  2、运用新知,尝试解答实际问题.

  一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

  (1)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?赶紧试一试?

  (2)在解题的过程中要注意单位统一。

  (学生自己完成并汇报解题思路)

  请同学们想一想

  已知圆柱的底面半径和高,求体积

  已知圆柱的底面直径和高,求体积

  已知圆柱的底面周长和高,求体积

  3.深入练习(小组合作)

  (1)一个圆柱形状的零件,底面半径是5厘米,高8厘米。这个零件的体积是多少立方厘米?

  (1)一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米.这个水桶的容积是多少立方分米?

  (2)一个圆柱的体积是62.8立方分米,高是5分米,底面积是多少?

  不会的可以向同学请教

  4、拓展提高:

  一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?

  [设计意图:让学生运用公式解决生活中的问题,使学生认识到数学的价值,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。]四、全课总结:

  通过这节课的学习,你有哪些收获?(生汇报收获)

  [设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。]

  五、学生作业:

  1、练习七的第l题完成在书上。

  2、课本26页试一试。

  3、一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?(选做)

  六、板书设计圆柱的体积

  长方体体积=底面积×高

  圆柱体体积=底面积×高

  V=Sh

《圆柱的体积》教学设计6

  一、教学目标

  (一)知识与技能

  用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

  (二)过程与方法

  经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。

  (三)情感态度和价值观

  通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

  二、教学重难点

  教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

  教学难点:转化前后的沟通。

  三、教学准备

  每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。

  四、教学过程

  (一)复习旧知,做好铺垫

  1.板书:圆柱的体积。

  问:圆柱的体积怎么计算?体积和容积有什么区别?

  2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)

  【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。

  (二)探索实践,体验转化过程

  1.创设情境,提出问题。

  每个小组桌子上有一个没有装满水的矿泉水瓶。

  教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)

  预设1:瓶子还有多少水?(剩下多少水?)

  预设2:喝了多少水?(也就是瓶子的空气部分。)

  预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)

  2.你觉得你能轻松解决什么问题?

  (1)预设1:瓶子有多少水?(怎么解决?)

  学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。

  教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)

  小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!

  (2)预设2:喝了多少水?

  学生:喝掉部分的形状是不规则,没有办法计算。

  教师:当物体形状不规则时,我们想求出它的体积可以怎么办?

  教师相机引导:能否将空气部分变成一个规则的立体图形呢?

  学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?

  引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)

  小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?

  (3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。

  【设计意图】课本中的例题呈现如下,

  例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。

  3.小组合作,测量计算。

  (矿泉水瓶内直径为6cm)

  教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!

  (1)课件出示:

  一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)

  (2)四人小组合作:

  A.组长安排好分工:

  要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。

  B.组内互相说一说:倒置前后哪两部分的体积不变?

  矿泉水瓶的容积=( )+( )。

  C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。

  【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。

  4.交流反馈。

  教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。

  瓶中水高度为6厘米的:

  3.14×(6÷2)2×6+3.14×(6÷2)2×13

  =3.14×9×(6+13)

  ≈537(毫升)。

  瓶中水高度为7厘米的:

  3.14×(6÷2)2×7+3.14×(6÷2)2×12

  =3.14×9×(7+12)

  ≈537(毫升)。

  瓶中水高度为8厘米的:

  3.14×(6÷2)2×8+3.14×(6÷2)2×11

  =3.14×9×(8+11)

  ≈537(毫升)。

  瓶中水高度为9厘米的:

  3.14×(6÷2)2×9+3.14×(6÷2)2×10

  =3.14×9×(9+10)

  ≈537(毫升)。

  教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。

  5.解答正确吗?

  教师引导学生回顾反思:刚才我们是怎样解决问题的?

  小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。

  【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的'学习中碰到相似的问题也可同样利用转化的思想来解决。

  (三)练习巩固,学以致用

  1.数学书P27做一做。

  (1)学生独立思考,解决问题。

  (2)把自己的想法与同桌说一说。

  (3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?

  求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。

  将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。

  3.14×(6÷2)2×10=282.6(毫升)。

  2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?

  (1)请学生计算,并反馈订正。

  (2)反馈要点:

  整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。

  根据图象,可以得出在第12分钟吊瓶有80毫升是空的。

  剩下液体的体积=100-2.5×12=70(毫升)。

  即整个吊瓶容积=80+70=150(毫升)。

  【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。

  3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?

  (1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?

  (2)讨论方法:

  A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。

  B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。

  (3)用自己认可的方法计算,并进行反馈。

  解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。

  解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。

  (4)反馈小结:可以有不同的转化方法来解决问题。

  【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。

  (四)全课总结,提升认识

  教师:回忆一下,今天这节课有什么收获?

  教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。

  在解决问题时,主要要弄清楚转化前后两部分之间的关系。

  【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。

《圆柱的体积》教学设计7

  教学目标:

  1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。

  2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。

  3、培养学生分析问题,解决问题及实践应用能力。

  教学重点:

  掌握有关圆柱的表面积和体积的'计算,会综合运用

  教学难点:

  运用所学的知识解决生活中的实际问题。

  学习过程:

  一、复习回顾

  1、下列图形的面积公式是什么?

  长方形的面积=

  正方形的面积=

  平行四边形的面积=

  梯形的面积=

  圆的面积=

  2、长方体的表面积=

  圆柱的表面积=

  二、探究圆柱的体积公式:

  圆柱的体积= 。

  如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。

  如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。

  三、例题学习:

  把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?

  例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?

  四、课堂练习

  1、求下面圆柱的体积

  1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米

  3)底面直径5分米,高6分米

  2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

《圆柱的体积》教学设计8

  教学目标

  1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。拓展教材内容,初步了解直柱体的相关知识。

  2、过程与方法:利用教材空间,为学生搭建思维平台。让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

  3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

  教学重点:

  理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

  教学难点:

  正确理解圆柱体积计算公式的推导过程。

  教学过程

  一、情境导入:

  老师手拿一个圆柱形橡皮泥(大小适宜)。

  1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?

  生1:(已学知识)。

  生2:圆柱是一种立体图形,那么它的体积怎么计算?

  【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。】

  2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?

  生1:圆柱体的体积计算没有学过,无法计算。

  生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

  生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

  【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

  师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!

  【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。】

  4、师:如果要求压路机前轮的体积或是求楼房中柱子的体积,还能不能用这种方法计算吗?(不能)那么求圆柱的体积时是否也有一个简单、易算的体积计算公式呢?今天我们就一起来研究圆柱体积的计算方法。

  【设计意图:学生的学习应该是出于自身需要的,是主动的、有效的,已有的知识已经不能解决新生问题时,学生产生强烈的求知欲望,为主动参与知识的形成过程,探究圆柱的体积计算公式奠定积极的情感基础。】

  二、新旧过度:

  教师引导学生观察圆柱形实物。

  1、

  师:发挥你的想象,哪些平面图形可以演变为圆柱体?生1:以长方形的一条长为轴,把长方形旋转一周,就形成一个圆柱体。

  (教师演示:大小不同的长方形旋转形成圆柱体。)

  生2:把一个圆形上下平移,移动过的轨迹就是圆柱体。(课件演示:大小不同的圆形上下垂直平移不同高度形成圆柱体。)

  师:通过刚才的演示过程你觉得圆柱的体积大小与什么有关?(圆柱的底面积和高)

  【设计意图:其一,让学生初步感知几何图形点———线———面———体的演变过程;其二,训练学生的空间思维能力,进而提升学生的数学思维含量;其三,为进一步探究圆柱的体积计算公式明确探究方向。】

  2、师:圆柱的底面大小就是圆柱底面圆形的面积,叫做圆柱的底面积。谁还记得圆面积计算公式的推导过程?

  学生口述,同时课件演示圆形转化为近似长方形的过程。

  【设计意图:回忆圆转化为近似长方形的过程,使学生重温化曲为直、化圆为方的数学思想,而且沟通新旧知识间的联系,同时为下一步对圆柱的转化(等份切割)顺利进行提供思维方法的帮助。】

  3、教师小结:我们能把一个圆采用化曲为直,化圆为方的方法转化成近似的长方形,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形呢?

  三、自主探究

  1、学生手拿圆柱实物,仔细观察,独立思考。

  2、组织学生小组讨论,把个人的想法在小组中交流,形成统一意见。

  强调:在讨论过程中,教师参与其中,倾听学生想法,调整汇报次序,同时提醒学生观察手中圆柱实物。

  3、汇报交流,统一意见。

  生1:把一个圆剪拼成一个近似的长方形,然后把圆形和近似长方形同时向上平移相同的高度,这时他们的轨迹一个是圆柱体,一个是近似长方体,而且它们的体积相等。

  (师:一个圆柱和一个长方体只要底面积和高分别相等,它们的体积就相等吗?一会儿我们来解决这个问题。)

  生2:把圆柱的底面分成许多相等的扇形,再沿这些分割线把圆柱纵切开来,从而剪拼成一个近似的长方体。

  (师:为什么是近似的长方体?———渗透数学极限思想)

  【设计意图:这个转化的过程是本节课的难点,在前面知识铺垫的基础上,发挥学生集体智慧的.结晶,为学生提供广阔的思维和交流平台,真正使学生的思维与学习相辅相成,从而达到提高学生空间思维能力之目的。】

  4、课件演示:

  师:仔细观察下面这组课件,和你想象的是否一样?

  演示两次,第一次把圆柱平均分成16份,再剪拼成一个近似的长方形;第二次把圆柱平均分成32份,再剪拼成一个近似的长方形。

  师:如果再平均分成更多的份数,结果会怎样呢?(平均分成的份数越多,转化成的形体就越接近长方体——极限思想)【问题讨论:课件中把圆柱平均分割后,其中的一块又平均分成两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的意图并没有这样的过程,我认为教材的方法是很可取的,符合极限思想,并且可以给予学生充分的思考和想象空间,因为只要均分的份数无限多时,拼成的图形就是一个长方体。然而实际教学中只是把圆柱平均分成16份或32份,那么在实际教学中如何更准确的诠释实际与理论之间的这种矛盾,从而更好的服务于学生思维、服务于课堂教学呢?】

  5、直观演示,寻找联系师:为了强化刚才的转化过程,我们再借助实物教具演示一遍(教具一半为红色,一半为绿色)。仔细观察演示过程,你能发现什么?

  生:长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱的底面积,而且它们的高相等。

  因为:长方体的体积=底面积×高

  所以:圆柱的体积=底面积×高

  V = S h 【学情分析:在小组讨论、课件演示的基础上,再有双色教具(一个红色教具,一个绿色教具,偶然发现双色混合更容易辅助学生找出联系)的实物演示,使得寻找圆柱体与长方体之间的联系变得异常容易,并且自然而然得到圆柱体体积计算公式,同时使学生感受获取知识的成功之喜悦、艰辛之感慨。】

  四、实践应用:

  1、从公式中可以看出,只要知道哪些条件就能计算圆柱的体积?口算:一个圆柱的底面积是90平方分米,高20分米,它的体积时多少?

  强调单位:90×20=1800(立方分米)

  2、再次拿出圆柱体橡皮泥,问:如果要用圆柱体积计算公式计算它的体积,你需要测量哪些数据?(底面直径、高)

  找学生实际测量,保留整厘米数,进行计算。将计算结果与用排水法求出的体积做一对比,可能存在误差。师:为什么会产生误差呢?

  生1:可能测量有误差,并且还要保留。

  生2:测量水的长、宽时,容器的厚度忽略不计,也能产生误差。教师说明:每一个科学结论都必须经过反复的实验、计算,才能得到正确的结论,我们在学习上就要有这种不怕吃苦、勇于探索的精神。

  3、出示一个圆柱形玻璃杯,出示一袋液态奶(225ml),问:通过计算你能知道这个杯子能装下这袋奶吗?除水杯的厚度忽略不计外,你还需要知道哪些条件?

  (教师直接给出玻璃杯的底面直径和高)

  【设计意图:层次性练习设计,第一层:基本练习,使学生更好的掌握本课重点,夯实基础知识;第二层,变式练习,进一步加深学生对圆柱体积公式的理解和掌握,学会灵活运用公式,在提高学生动手操作能力的同时,培养学生的逻辑思维能力;第三层,密切联系生活,运用公式解决引入环节中的问题,使学生的思维处于积极的状态,达到培养学生思维的灵活性和创造性解决问题能力的目的。】

  五、看书质疑:看书P19—20,师:哪些知识是我们没有讲到的?(V=∏r2 h)结合本节课的探究过程,你有什么疑问吗?

  若学生有困难就教师提出问题:长方体和圆柱体有什么相同的地方,为什么他们的体积都能用V=Sh来计算?

  学生独立思考后,教师解释:我们现在所学的圆柱体是直圆柱,他与长方体都属于直柱体,只要是直柱体,体积都可以用V=Sh来计算。如三棱镜的体积=底面三角形的面积×高

  【设计意图:课本是最好的教学辅助工具,是学生学习最好的伙伴,让学生再次重温本节课的学习历程,养成一种良好的学习习惯和学习品质。】

  【问题讨论:我个人认为,在每一节课每个知识点的教学过程中,都尽量站在“数学”的高度来教学,于是对教材内容进行了拓展。长方体与圆柱体的体积公式V=Sh正好说明直柱体体积=底面积×高,但因为长方体(平面围成)与圆柱体(曲面围成)之间的联系较难找出,无疑增加了学生的思维负担,但从数学学习的角度来说,它却为今后“几何”学习奠定基础,这一环节处理是否有利于六年级学生思维发展?】

  六、全课小结:

  师:通过本节课的学习,你有什么收获?

  【设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用体温师小结,使学生畅谈收获,发现不足,既能训练学生语言表达能力,又能培养学生的归纳概括能力,同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。】

  启发与思考

  启发

  一、充实教材,为提高学生思维能力搭建平台

  课堂教学中让学生在教师的启发指导下,独立思考、积极主动的去探究知识是怎样形成的,才能真正使学生成为学习的主体。在教材中已经提供了图形转化的过程,那么在没有学具让学生进行动手操作、亲自感悟的情况下,怎样让学生的思维真正参与到知识的形成过程呢?作为教师,必须充实教材。课堂中让学生动手测量计算所必需的数据,自己感悟学习圆柱体积计算公式的必要性,合作探究圆柱体的转化方法和过程。所有这些环节的设计,都在潜移默化中引导学生主动思考,主动参与,在思考与参与中提高了学生的思维能力。

  二、借助教材,为提高学生思维能力寻找支点

  数学知识具有一定的结构,知识间存在密切的联系,教学时要找出知识间的内在联系,帮助学生建立一个较完整的知识系统。教材中设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方形计算体积吗?”但我认为“面体过渡”在几何领域中本身就是一个难点,而“面面互化”迁移到“体体互化”,就难上加难,所以设计中用较长时间沟通新旧知识间的联系:排水法的应用,平面图形演变为立体图形的过程,圆面积的推导过程。在复习当中,学生的综合运用能力得到提高,更重要的是为下一步学生的思维活动确立支点,进而提高学生的思维能力。

  三、理解教材,为提高学生思维能力提供保证数学思想的教学才是数学课堂教学中最本质的教学。从教材的编排,还有各知识点的呈现中可以看出,有一条不变的主线贯穿始终,那就是转化思想中的化曲为直、化圆为方。那么,只要教师真正理解教材的这一编写意图,学生所收获到的就不仅是圆柱体积的计算方法,而是真正感悟到数学转化思想,学生必将运用这种思想影响今后的学习,为其思维能力得以持续发展提供保证。思考

  思考

  一、演示、观察能否代替操作?

  教材中提供了教具演示,但在本节教学前,始终没有找到学生使用的操作学具,而自己也尝试用土豆、橡皮泥等制作学具,都因为难度太大(粘接处)而告失败,在无奈之余,设计了“独立思考———小组探究———课件演示———教具操作”四个环节来突破本节难点。就学生理解、接受方面来说效果不错。但没有让学生亲自操作,总感觉影响学生思维发展。类似教学如:圆锥高的认识。

  二、研究中的失误会不会造成学生认知的“失误”?

  课堂中为求真实,进行了两次实际测量(第一次测长方体中水的长宽高;第二次测圆柱形橡皮泥的底面直径和高)。两次计算结果的对比,使学生思维与课堂结构都体现完整性。但由于种种误差,计算结果很可能不会相等,这就可能会让学生对结论产生怀疑(尽管教师已经说明),那么是否有必要让学生经历一个“失误”的过程呢?类似教学如:圆周率的计算。

《圆柱的体积》教学设计9

  教学内容

  教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

  教学目标:

  1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

  2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

  教学重点

  理解和掌握圆柱体积的计算公式。

  教学难点

  圆柱体积计算公式的推导。

  教学准备:

  圆柱体模具。

  教学过程:

  预习作业检测

  学习计算圆的面积时,是怎样得出圆面积的计算公式的?

  求下面各圆的面积

  R=1厘米求Sd=4分米求Sc=6.28米求S

  长方体与正方体的体积都可以用什么公式来表示?

  圆柱底面积/平方米高/米体积/立方米

  0.61.2

  0.253

  合作探究

  你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。

  课本上是怎么把圆柱体和长方体联系在一起的呢?

  生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

  用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

  ○1、等份越多,拼成的物体越接近于长方体。

  ○2、长方体与圆柱体等底等高。

  ○3、长方体体积=圆柱体体积

  ○4、圆柱的体积=底面积×高(V=sh)。

  根据刚才的结论完成下面的题目:

  ○1、一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的'体积是多少?生独立完成后,师有选择的找几位学生的作业进行投影展示,全班交流评价。

  ○2、一个圆柱形状的零件,底面半径5厘米,高8厘米,这个圆柱的体积是多少立方厘米?

  引导学生读题,思考。指名说出自己想的过程。生独立解答,展示、交流、评价。

  当堂达标检测

  1、“练一练”第1题。

  2、练习七第2题。

  3、“练一练”第2题。

《圆柱的体积》教学设计10

  教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体

  积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的.方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

  在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。

  教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。

  总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!

《圆柱的体积》教学设计11

  一、复习。

  1、听算。

  1π——10π、16π、25π的值。

  2、口答(开火车)112——202

  二、新授。

  (一)圆柱体体积的推导。

  1、师:我们学习过哪些立体图形?

  生:长方体、正方体。

  师:长方体体积怎样求?

  生:“长方体体积=长×宽×高”

  师随即板书。

  师:正方体体积怎样求?

  生:“正方体体积=棱长3”

  师随即板书。

  师:长方体、正方体一个通用的公式是怎样的?

  生:长方体或正方体体积=底面积×高。

  师随即板书。

  师:用字母表示为v=sh

  2、师:今天我们来学习和研究“圆柱体的体积”,板书课题。

  师:能不能把圆柱体转化成我们学过的长方体或正方体来计算呢?

  生:能。

  师:怎样转化?

  生:

  师:大家先想一想,学习计算圆面积时是怎样把圆变成已学过的图形再计算面积的?

  生:把圆平均分成许多小扇形,再拼成一个近似的长方形,最后计算出长方形的面积,也就得出了圆的面积。

  师:怎样把圆柱体转化成我们学过的图形来计算出它的体积呢?大家讨论讨论。

  师:谁能把讨论的情况说一说?

  生:把圆柱体从上到下平均分成许多小扇形再切开,然后拼成一个长方体或正方体,最后计算出长方体的体积,也就得到圆柱体的体积。

  3、师:谁愿意跟老师合作演示这一过程?

  4、师生一起演示教具。并由学生展示。

  5、师:同学们看了演示过程回答4个问题:

  a、什么变了?什么没变?

  生:形状变了,体积没变。

  师:b、长方体的底面积与圆柱的底面积有何关系?

  生:相等。

  师:c、长方体的高与圆柱体的高又有何关系?

  生:相等。

  师:d、长方体的体积=底面积×高,那么圆柱体的体积怎样计算?

  生:圆柱体的体积=底面积×高。

  师:读、背各一次。

  师:用字母v柱表示圆柱的体积,s表示底面积,h表示高,它的字母公式为:

  v柱=sh,大家读、背、写各一次。

  (二)圆柱体体积公式的应用。

  1、师:要求圆柱体的'体积需要知道哪些条件?

  生:需要知道底面积和高。

  2、师:请读例4,一根圆柱形钢材,底面积是50cm2,高是21m,它的体积是多少?

  师:用手势表示有几个条件,要求几个问题?谁能求出它的体积?

  生:2.1m=210cm

  50×210=10500(cm)3

  师:还可以怎样表示?

  生:50×210÷1000=10.5(dm)3

  师:还有别的表示法?

  生:50×210÷1000000=0.0105(m)3

  师:为什么要分别除以1000和1000000?

  生:

  师:相邻体积单位的进率为1000,面积单位100,长度单位10,并且是低级单位化成高级单位用除法计算,三个结果任选一个即可。全体同学一起说答。

  3、师:想一想,如果已知圆柱底面的半径r高h,怎样求圆柱的体积?

  生:用r2×π×h等于圆柱的体积。

  师:随即板书v柱=πr2h练习一题

  已知r=5cm h=10cm求v柱,第一名演板。

  师:谁再出一道类似的题,让大家练习?

  生:r=10cm, h=5dm,求v柱。

  师生一起评点

  4、师:如果告诉直径和高怎样求体积呢?

  生:用直径÷2得半径,再用半径的平方乘以π乘以高。

  师随即板书(d÷2)2πh=v柱

  师:请读例5,一个圆柱形水桶,从里面量底面直径是20cm,高是25cm,这个水桶的容积是多少立方分米?

  师:用手势表示有几个条件,要求几个问题?

  师:怎样求?

  生:(20÷2)2×3.14×25

  =100×3.14×25

  =314×25

  =7850(cm)3

  =7.85(dm)3

  答:它的容积有7.85dm3。

  5、师:我们已经会求圆柱体的体积了,现在考考你们,请做p37,1、2,前两名的演板。(学生演板后师生评点)。

  三、巩固并拓展

  1、师:还有可能告诉哪些条件求圆柱体的体积?

  生:还有可能告诉底面周长和高求体积?

  师:怎样求?

  生:周长÷π=直径,直径÷2=半径,半径的平方乘π乘高。

  师随即板书:(c÷π÷2)2πh=v柱

  师:谁出题让大家练习?

  生:c=12.56cm h=5cm。

  师生一起评点:

  (12.56÷3.14÷2)2×3.14×5

  =12.56×5

  =62.8(cm)3

  2、师:还有可能告诉哪些条件,求圆柱体的何种?

  生:还有可能告诉,周长和侧面积,求体积。

  师:怎样求?大家讨论。

  生:侧面积÷周长=高,周长÷π÷2=半径

  用半径的平方乘π乘h等于体积。

  师随即板书:

  s侧÷c×(c÷π÷2)2π=v柱。

  师:谁能出题大家练习?

  生:s侧=12.56cm2,c=12.56cm,求体积。

  师生一起评点:

  12.56÷12.56×[(12.56÷3.14÷2)2×3.14]

  =1×[12.56]

  =12.56(cm)3

  3、师:还有可能告诉哪些条件求圆柱体的体积?

  生:告诉s侧和高,求体积。

  师:怎样求?大家讨论。

  生:s侧÷高=周长,用周长÷π÷2等于半径,用半径的平方乘π乘高等于体积。

  师随即板书:

  (s侧÷h÷π÷2)2×3.14×h=v柱

  师:谁出题大家练习?

  生:s侧=28.26cm2,h=1dm,求体积。

  师生一起评点。

  (28.26÷10÷3.14÷2)2×3.14×10

  =0.452×3.14×10

  =20.25×3.14×10

  =635.85(cm)3

《圆柱的体积》教学设计12

  一、教学内容

  教材第25页 例5、例6

  二、学习目标

  1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

  2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

  3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

  三、教学重难点

  1、重点:理解、掌握圆柱的体积公式的推导过程。

  2、难点:圆柱体积公式的推导过程。

  四、教学准备

  多媒体课件

  五、教学过程

  <一>创设情境、生成问题

  师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的'吗?(课件出示一个长方体和一个正方体)

  生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

  师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

  板书:圆柱的体积(课件)

  <二>探索交流、解决问题

  1、猜想

  师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

  (生自由猜想,并讨论交流)师适当板书记录

  刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

  (课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

  师:第一组图片中的两个圆柱有什么特征?

  生:底面一样,但是高度却不一样,体积也不一样

  师:第二组图片中的两个圆柱有什么特征?

  生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

  师:那么通过刚才两个同学的回答,你能得出什么结论呢?

  小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

  师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

  生猜想......

  师:我们的猜想对不对,还是要用实验去证明

  2、推导圆柱体积计算公式

  师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

  生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

  师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

  (课件出示作业纸)对应和公式推导

  选取小组的作业纸进行展示,有其他同学进行评定

  课件演示结果

  小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

  另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

  <三>巩固应用、内化提高

  2、

  3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

  8cm

  8cm

  498ml

  498ml

  10cm

  10cm

  <四>回顾整理、反思提升

  今天这节课你有什么新的收获说出来和大家一起分享吧!

《圆柱的体积》教学设计13

  教学内容:

  青教版九年义务教育六年制小学数学六年级下册第23—28页。

  教材简析:

  该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

  教学目标:

  1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

  2、经历探索圆柱计算公式的过程,进一步发展空间观念。

  3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

  教学重点和难点:

  圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

  教具准备:

  多媒体课件、圆柱体积学具、沙子等。

  第一课时

  教学过程:

  一、创设情境,激趣引入。

  谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

  课件出示:两个圆柱体冰淇淋。

  谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

  (生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

  设计意图:

  从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

  二、回忆旧知,实现迁移。

  谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

  (学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  设计意图:

  通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

  三、利用素材,探索新知。

  ㈠交流猜测

  谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

  生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

  师谈话:你的想法很好,怎样转化呢?

  生讨论,交流。

  生汇报,可能会有以下几种想法:

  1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

  2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

  3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

  谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

  ㈡实验验证

  学生动手进行实验。

  谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

  学生合作操作,集体研究、讨论、记录。

  设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

  四、分析关系,总结公式

  1、全班交流

  谈话:哪个小组愿意展示一下你们小组的研究结果?

  引导学生发现:

  转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

  2、分析关系

  引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的`高。

  3、总结公式。

  谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

  (课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

  谈话:你发现了什么?

  引导观察:分的份数越多,拼成的图形就越接近长方体。

  (课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)

  谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

  根据学生的回答教师板书:

  长方体的体积 = 底面积 × 高

  圆柱的体积 = 底面积 × 高

  谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh

  设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

  五、利用公式,解决问题。

  自主练习第1题、第2题、第3题

  设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

  六、课堂总结

《圆柱的体积》教学设计14

  教学内容:

  苏教版义务教科书《数学》六年级下册第15~16页例4、“试一试和“练一练”,第17页练习三第1~2题。

  教学目标:

  1、使学生结合具体情境,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。

  2、使学生在观察、猜想、验证、归纳等数学活动过程中,进一步感受转化思想,积累数学活动的经验,培养应用已有知识探究和解决新问题的能力;培养观察、比较和分析、概括等思维能力,进一步发展空间观念。

  3、使学生主动参与学习活动,培养乐于思考、善于思考的品质;进一步体会探索和获得新知的成功过程,提高学习数学的兴趣和学好数学的自信心。

  教学重点:

  探索并掌握圆柱的体积公式。

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教学准备:

  圆柱体转化成长方体的学具。

  教学构想:

  这部分内容是在学生学算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例4先比较等底等高的长方体、正方体和圆柱体之间的体积关系,建立圆柱体积公式的猜想;然后把探索圆面积公式的方法迁移过来,通过操作验证圆柱公式的猜想。“试一试’和”练一练”都是让学生应用刚刚学习的体积公式计算圆柱的体(容)积,解决简单的实际问题,巩固加深对公式的理解。

  教学过程:

  一、复习导入

  呈现长方体、正方体和圆柱的直观图。

  提问:认识这些几何体吗?说说各是什么形状。

  你能求出哪个几何体的体积?

  集体交流,教师板书:

  长方体体积=长×宽×高;

  正方体体积=棱长×棱长×棱长;

  长方体(正方体)体积一底面积×高。

  引导:圆柱的体积怎样计算呢?它和我们以前学习的知识有没有联系呢?今天我们就一起来探索圆柱体积的计算方法。(板书:圆柱的体积)

  二、教学例4

  1、观察比较,建立猜想。

  (1)出示例4,指名读题,明确底面积和高都分别相等。

  提问:长方体和正方体的体积相等吗?为什么?

  集体交流得出:长方体和正方体的底面积相等,高也相等;长方体和正方体的体积都等于底面积乘高,所以它们的体积相等。

  (2)提问:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?把你的想法在小组里交流。

  集体交流,引导学生猜想圆柱的体积与长方体、正方体的体积可能相等,也就是可能等于底面积乘高。

  (1)引导:同学们认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?在小组里讨论。

  小组讨论,教师适时提醒:圆可以转化成近似的长方形计算面积,圆柱是否也可以转化成近似的长方体计算体积呢?

  引导得出:圆可以转化成近似的长方形,按同样的方法把底面圆平均分,把圆柱切开,可以拼成近似的长方体。

  (2)提问:你能按这样的想法把圆柱转化成长方体吗?各小组拿出课前准备好的圆柱学具,试着把它拼一拼

  小组合作,动手操作。

  集体交流,部分小组派代表说一说拼的方法。

  得出:把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。

  (3)启发:如果把圆柱的底面平均分的份数再多一些,比如平均分成32份、64份……切开后拼成的物体会有什么变化呢?同学们可以先在头脑里想象一下。

  让学生说说把圆柱底面平均分成32份、64份……切开后拼成的物体会有什么变化。

  课件演示把圆柱的底面平均分成32份、64份……切开依次拼一拼提问:和你想象的一样吗?拼成的物体有什么变化?这说明什么?

  小结:把圆柱的底面平均分的.份数越多,切开后拼成的物体就越接近长方体。这样无限地分下去,就能拼成长方体。

  3、观察比较,推导公式。

  提问:拼成的长方体与原来的圆柱有什么关系?

  学生交流后,借助示意图小结:拼成的长方体的体积与圆柱的体积相等;拼成的长方体的底面积等于圆柱的底面积,高等于圆柱的高。

  追问:想一想,可以怎样求圆柱的体积?

  根据学生的回答,小结并板书圆柱的体积公式:

  圆柱的体积=底面积×高

  谈话:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,(出示直观图,并用字母表示底面积和高)你能用字母表示圆柱的体积公式吗?

  指名口答,教师板书:V=Sh。

  4、回顾过程,反思交流。

  提问:回顾圆柱体积公式的探索过程,你知道了什么,有什么体会?把你的想法在小组里交流。

  小组交流后全班反馈。

  小结:推导圆柱体积公式的过程让我们知道,可以利用长方体体积公式推导出圆柱体积公式。推导时可以联系圆转化成长方形的方法,把圆柱切开拼一拼,转化成长方体,发现拼成的长方体和圆柱体积相等,得出圆柱体积的计算方法和长方体、正方体一样,也用底面积乘高。

  5、完成“试一试”。

  指名读题,理解题意。

  学生独立完成,指名板演。

  集体订正。

  提问:计算这个零件的体积应该先算什么,再怎么算?

  说明:根据圆柱体积的计算方法,求体积要用底面积乘高。当底面积未知时,可以先求底面积,再计算体积。

  三、巩固应用

  1、完成练习三第1题。

  出示表格,学生独立填写。

  指名口答,集体订正。

  提问:这里是怎样计算圆柱体积的?

  2、完成“练一练”第1、2题。

  学生独立完成,指名板演。

  集体交流,让学生说出每题的思考过程。

  提问:比较这两题的解答过程,有什么相同点与不同点?

  得出:两题都是求圆柱的体积,都是先求底面积,再用底面积乘高求出体积。但这两题已知条件不同,第1题两小题是已知圆柱的底面直径或半径和高,第2题是已知圆柱的底面周长和高,计算时注意根据不同的条件,用相应的方法先求出圆柱的底面积,再计算圆柱的体积。

  四、课堂总结

  提问:这节课我们学习了什么内容?圆柱的体积公式是怎样推导出来的?你还有哪些体会?

《圆柱的体积》教学设计15

  教学目标

  知识与能力

  1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  过程与方法

  1.通过观察、实验、讨论,学生理解所学知识。

  2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。

  3.在讲解例题与巩固练习中,学生掌握基本的解题方法。

  情感、态度与价值观

  1.使学生感觉到数学就在身边,激发其学习数学的兴趣。

  2.通过实验操作及设问,培养其创造性思维和大胆的猜想。

  教学重点

  圆柱体体积的计算

  教学难点

  圆柱体体积的公式推导方法

  教学突破

  本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。

  教 具

  圆柱的体积公式演示教具,多媒体课件

  教学过程

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  (5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  2,复习相关知识,为新课教学作铺垫。

  (1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)

  (2)出示圆柱体物品,指名学生指出各部分名称。

  二、新课教学

  设疑揭题:

  我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。

  1.探究推导圆柱的体积计算公式。

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:

  ① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

  讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?

  填表:请同学看屏幕回答下面问题,

  ④ 底面积(㎡)高(m)圆柱体积(m3)

  4 3

  5 6

  9 2

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)

  例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  三、巩固反馈

  1.求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业本上做。板演的同学讲解自己的'解题方法题。

  ⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

  四、拓展练习

  1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

  2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

  五、课堂小结

  1.谈谈这节课你有哪些收获。

  2.解题时需要注意那些方面。

  六、布置作业

  1.课后练习1,2题

  2.拓展练习2题

  板书设计

  圆柱的体积

  长方体的体积=底面积x高

  圆柱——长方体 圆柱的体积=底面积x高

  V=sh

【《圆柱的体积》教学设计】相关文章:

《圆柱的体积》教学设计08-01

《圆柱的体积》教学设计07-22

圆柱的体积教学设计09-17

《圆柱的体积》教学设计优秀06-24

《圆柱的体积》教学反思09-08

圆柱的体积的教学反思03-03

圆柱的体积教学反思08-24

圆柱的体积教学反思11-06

《圆柱的体积》教学反思05-22

圆柱的体积说课稿09-09