《轴对称图形》教学反思
作为一位优秀的老师,我们要在教学中快速成长,借助教学反思可以快速提升我们的教学能力,教学反思我们应该怎么写呢?下面是小编整理的《轴对称图形》教学反思,希望能够帮助到大家。

《轴对称图形》教学反思1
在教学《轴对称图形》这一内容时,我发现学生们对于轴对称的概念理解不够深入,很多同学只是停留在“对称轴两侧图形相同”的表面理解上。因此,我在教学中注重引导学生深入理解轴对称的本质,同时也注重培养学生的观察能力和创造力。
首先,我通过展示一些轴对称图形的实例,让学生们感性理解轴对称的概念。我让学生们在课堂上自己制作轴对称图形,让他们通过亲身体验,感受到轴对称图形的特点。这样的教学方式,让学生们更深刻地理解轴对称的概念,并且对于后续的学习打下了坚实的.基础。
其次,我在教学中注重培养学生的观察能力和创造力。我让学生们通过观察日常生活中的轴对称图形,比如镜子、自行车轮子等,让他们自己发现轴对称图形的特点。我还让学生们在课堂上自己设计轴对称图形,让他们发挥自己的创造力和想象力,这样的教学方式不仅能够提高学生的观察力和创造力,也能够让学生更加深入地理解轴对称的概念。
最后,我在教学中注重巩固学生的轴对称图形的计算能力。我通过讲解轴对称图形的计算方法,让学生们掌握如何计算轴对称图形的坐标。我还通过让学生们做一些轴对称图形的计算题目,巩固学生的轴对称图形的计算能力。
总之,通过以上的教学方式,我让学生们更加深入地理解轴对称的概念,同时也培养了学生的观察能力和创造力。在今后的教学中,我还会继续注重培养学生的观察能力和创造力,让他们在学习中更加主动地思考和探索。
《轴对称图形》教学反思2
一节好的数学课,是教师人格魅力和智慧魅力的结晶、是个性魅力、艺术魅力和创新魅力的展示。刘老师“跳出数学教数学”,“自然而不随便,规范而不死板”的课堂教学风格,让我感受颇深。
参加参加第23届现代与经典小学数学观摩研讨会后,模了刘老师的《轴对称图形》一课。应该说这节课上得非常成功,用了老师原版的课件,老师课堂上设计意图和对学生的思维训练也都落实到位了。会后,老师们也给予了一定的肯定。
刘老师的课自然、朴实、亲切、睿智、深刻而又不失幽默。首先在题目上做文章。从倒过来的题目开始,教师就渗透轴对称的现象,让学生直观感受。接下来老师有意画坏一个轴对称图形,让学生初步感知不对称、不一样。然后启迪思维怎样一次得到一个完整的轴对称图形,有同学说用电脑,有同学想到折纸的方法。刘老师的课能让学生放松下来,参与到活动中去,比如课上让学生边做动作、做喊“翻上去”、“打开”学北风“呼-呼”,看起来好似学生表面参与,其实在学生的一翻一开当中,建立了空间观念。教学思以文字为中心的教科书。本节课中教师更多的是作为学生学习的引导者、组织者、欣赏者而存在于学生的学习过程之中。教学中教师更多的是关注学生对数学美感的感受、捕捉和创造能力的培养。主要体现在以下几个方面:
一、通过游戏与生活,感知对称美。
美国教育心理学家奥苏伯尔曾经说过:“如果我们不得不把教育心理学还原为一条原理的话,我将会说,影响学生的最重要原因是学生已经知道了什么。”很多学生在幼儿园和小学二年级的剪纸课上,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,教者设计“贴眼睛”的'这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。
二、动手创造,感受对称美。
皮亚杰指出:“要知道一个客体,就必须动之以手。”学生在感知的基础上,再进行学具操作,有利于学生形成表象,促使学生从具体思维向抽象思维的转化。平面几何图形中轴对称图形的判断是本节课学习的重点。在学生经历了生活化的情感体验和实践操作,对轴对称图形的认识也就水到渠成。教者从学生的兴趣出发,通过从生活中感知、在操作中研究、在合作中感悟,让学生实践操作,逐步体验轴对称图形的基本特征。在教学中注意引导学生在操作的基础上讨论交流,在小组合作中进一步理解轴对称图形的特征,继而将轴对称图形与实际生活相融合,拓宽学生的视野,让学生感受到生活中数学无处不在,体会对称的科学与美学价值。这里教师完全放手让学生在大胆猜想、辨别争论、动手验证,充分提供给学生从事数学活动的机会,使学生真正成为课堂学习的自主探究者。
三、欣赏图片,感悟对称美。
在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
这节课的教学,使我感受到,数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。“数学,如果正确地看她,不但拥有真理,而且也具有至高的美。数学提供了一种精确简洁通用的科学语言,数学语言正是以她的结构与内容上的完美给人以美的感受。”
《轴对称图形》教学反思3
教材主要借助生活中的实例和学生操作活动判断哪些物体是对称的,找出对称轴,并初步地、直观地了解轴对称图形的性质。
一节成功的课堂教学,不仅是要让学生掌握所学的知识,更重要的是要创造一种和谐愉悦的气氛,让学生能够从中感受到学习的乐趣,并主动地去探求知识,发展思维。为此,本课的教学我充分多媒体的作用,让学生在观察中思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主。
1、从兴趣入手,以兴趣为先导,创设了轻松的心境。针对小学生年龄偏低,抽象思维能力还相对较弱的实际情况,我借助一幅幅赏心悦目的的.图像,寓知识于娱乐,化抽象为形象,变空洞为具体,使学生的学习具有形象性、趣味性。使学生在情境中发现数学信息,找出数学规律,渗透“生活中处处有数学”的新的“数学思想”。
2、本课为了让学生充分体验到轴对称图形的这一
特征,我安排了剪一剪、折一折、比一比,猜一猜等活动,通过大量的动手操作,让学生多种感官参与教学活动中。把学生看作是课堂的主角,力图让学生用自己的思维方式自由开放地去探索、去发现、去再创造,以张扬学生的个性,培养学生的动手操作能力和创新能力,使学生通过大量的感性经验形成表象,进一步体会轴对称的含义,变“学”数学为“做”数学,提高了动手实践能力,获得积极的情感体验。学生在整个动手操作的过程中,进一步体会了对称图形的形成,感受到了对称图形的内在美。通过欣赏同学的作品这一活动,使学生在欣赏漂亮图案的同时与大家分享“创造美”的愉悦,体验数学的美和创造的美。这些活动,从很大程度上培养了学生的创新思维和创造能力。
3、让学生学会评价他人,评价自己,唤醒学生自我评价的意识,让学生建立自信,超越自我。这节课的教学,使我感受到,数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。”
《轴对称图形》教学反思4
一、一段题外话
4月4日清明,许多学校都组织了学生去春游。后来老同学讲了一个笑话。她说清明节那天她们学校组织去烈士陵园扫墓。回来后让学生写作文。要求写出所看到的,所想到的就行了。有一大半的学生写道:“清明节,我们怀着高兴的心情来到了烈士陵园。”
无语,不知道怎么说。
二、轴对称图形。
轴对称图形学生在三年级的时候就已经学过,感觉不是太难。书本上的题目我事先做了一下,觉得学生应该也是能够做的。
1、操作之后的语言
今天一上课我就出示了各种图形,让学生说出哪些是轴对称图形,学生很快地就把轴对称图形找出来了。我让学生拿了长方形到黑板前对折而后自己再画了对称轴,顺便规范了一下对称轴的画法。再让学生先想一下,再用自己的语言说了一下什么叫对称轴,哎,我发现,经过操作学生就是能够说,而且说得是自己的理解,也还蛮到位。
2、探究部分的难度。
原题为:试一试找出正方形的对称轴。
正方形图案简单,学生对正方形的感知很多,找出正方形并画出对称轴并不是难事,可以说,没有探究的价值。
所以,我把题目变了一下,改为让学生探究想想做做4.
小组合作:找出各个图形的对称轴。
完成下表。
正三角形
正四边形
正五边形
正六边形
边数
对称轴的条数。
你们的.发现。
学生一填,马上找出了规律。那就是:正几边形就有几条对称轴。
这一步,还是处理得很满意的。
3、练习的问题。
既然是新授的第一课时,练习中就肯定会出现形形色色的问题,有些在预设之中,有些在预设之外。
譬如第2题。学生的对称轴找不全。
譬如第5题,学生的图形设计流于简单,缺乏美感。
《轴对称图形》教学反思5
一、有效预习、提高效率
预习 是“学程导航·活力课堂”最核心的环节,预习的质量直接影响课堂教学的质量。《轴对称图形》一课的内容相对来说比较简单,所以我设计的预习作业是:
1.让学生通过动手折一折,初步感知轴对称图形的`特征,了解对称轴。
2.让学生收集生活中的轴对称图形,试着自己做一个轴对称图形。
二、实践操作、激活思维
本课为了让学生充分体验到轴对称图形的这一特征,我安排了折一折,比一比,猜一猜,画一画,做一做等一系列活动,让学生多种感官参与教学活动。在新授教学时始终把学生放在主体地位,让学生通过观察平面图形的特征,大胆地加以猜测,并通过小组动手操作来验证它们为什么是对称的,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,让学生了解这些图形的基本特征,形成感性的认识。
三、小组合作、发挥特效
在本课中,有很多活动都是采用小组合作的形式,如交流预习成果,在平面图形中找轴对称图形,交流如何做一个轴对称图形。这样通过小组合作,在操作、交流中感知,真正体现了“兵教兵”、“兵练兵”、“兵强兵”,从而将每个人的收获变成学生集体的共同精神财富。
《轴对称图形》教学反思6
《轴对称图形》是苏教版三年级上册第六单元的内容,本节课初步教学轴对称图形。教材在编排上从具体到抽象、从感性到理性,循序渐进。本教材联系学生的生活实际,选择学生熟悉和感兴趣的材料,让学生通过观察、操作等形式多样的活动,初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,以及利用轴对称方法进行变换或设计图案打好基础。教材的编写意图是要抽象出生活中轴对称现象的共同特征,使学生能从整体上去认识轴对称现象,在各种探究活动中让学生感悟轴对称图形的特征,并培养学生积极健康的审美情趣。
要使学生真正成为学习的主人,教学必须要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在学习实践中逐步学会学习。通过先观察再对折的活动,学生发现了这些图形的共同之处――对折后折痕两边的`部分能完全重合,揭示了轴对称图形共同的特征。通过找作品中的轴对称图形,让学生进一步认识到:如果把一个图形对折,只要折痕两边的部分能完全重合,那么这样的图形就是轴对称图形,这条折痕就是它们的对称轴。再让学生通过折一折,画一画,剪一剪的活动,初步体验了轴对称图形的特征,学生学得轻松、有趣、扎实。
在讲授这课时,课本上的有这样一节设计,让同学们判断下列图形是否是轴对称图形,这些图形有正方形、等腰梯形、等腰三角形、不等腰三角形、不等腰梯形、圆形、长方形、平行四边形。学生在通过观察后,大多的图形全体同学们都非常容易的判断正确了。只是在平行四边形是否是轴对称图形的问题上存在较大的分歧,是与否两方的支持率大约各是50%左右。为了加深学生的认识,我课前让学生亲自动手做了一个平行四边形让他们拿出来折一折,然后再做判断。学生马上表现出极高的探索热情,在通过折一折的操作后,全班同时达成了共识,平行四边形不是轴对称图形。当时,我暗暗的窃喜,对新教育理念“学生只有动手才能学会”又加深了一层理解。学生通过亲自的动手操作,走进了知识的形成过程,是掌握知识的重要途径。
但是,这节课还存在一些不足之处,比如:轴对称图形可以是左右对称,也可以是上下对称、斜着对称,虽然课上我也展示了各种方向的对称,但在欣赏对称图形时,学生受到一些思维习惯的干扰,左右对称容易给他们造成思维定势,对上下对称、斜着对称易忽视。还有,学生虽然对轴对称有了认识,也能说出是不是轴对称,但用数学语言完整的表述出来有难度,个别学生抽象思维能力较弱,对本节课的内容掌握欠佳,有待课后单独辅导。在以后的教学中,我会根据新课程的理念,努力改进教学方法,发挥好教学活动的组织者、引导者的角色,让课堂成为学生获取知识并享受成功的殿堂。
《轴对称图形》教学反思7
今天,我上了一节关于利用多媒体辅助教学的数学课,内容是三年级下册《轴对称图形》。对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。因此,我借助网络,展示具体的图形、形象的动画,引导学生观察发现——它们的两边都是一样的,并结合学生动手操作,运用试一试、剪一剪、围一围、折一折等方法,通过不同折法,师生共同小结得出结论:对折后,折痕两边的部分完全重合,从而逐步体验轴对称图形的基本特征。当学生对轴对称图形的特征有了初步感知之后。让学生进行操作,目的是让学生在操作活动过程中,验证图形对折后折痕两边的部分完全重合这一基本特征。在此基础上解释出轴对称图形中对称轴的概念。然后,让学生运用轴对称图形的特征,先把纸对折,画上简单的图案,然后再剪,剪好后再展开,就成了一个轴对称图形。这样加深了学生对轴对称图形特征的`认识。
一般听来的忘得快,看到的记得住,而动手做的学得好。在学习数学过程中,学生的直观操作可耻下场驱动内在的思维活动,使外显的动作促进数学思考,把具体的感知上升为抽象的思维。本课要掌握“对折——重合——完全重合”这三个重要的知识点。首先通过自己的判断把我之前准备的几个平面图形按对称图形和不对称图形进行分类。在这个活动中,学生自己发现了“对折”这一个重要方法。再通过每个同学自己动手把对称图形对折,引出了“挡住了”“合在一起了”这些学生用自己的语言对“重合”的理解。最后通过对折后的对称图形与不对称图形两者的比较,引出对两种重合的区别,从而深刻理解了“完全重合”。最后设计了一个对“折痕”比较的过程,让学生知道只有把对称图形对折后能完全重合的折痕才是“对称轴”这样的图形才是“轴对称图形”可以说,在整个认知过程中,学生通过分一分,折一折,画一画是能够完全掌握这节课的学习重点。自主的学习比老师单纯的讲授,效果要好得多。
知识来源于生活,当然知识也应该应用于生活。从对轴对称图形的学习,从中也感悟到对称美。通过网络,搜索生活中丰富多彩的轴对称图形,让学生欣赏到了许多关于运用轴对称原理设计图案,以及利用轴对称知识创造出的美丽的民族文化,让学生切实体会到对称在生活中无处不在,它为我们的生活增添了美丽的色彩,加上配乐欣赏,让学生更加陶醉于美丽的画面中,让本节课达到了**,同时更激发了学生创作的欲望。欣赏完后,很多同学都有跃跃欲试的兴奋,很想自己亲手创造关于轴对称的作品。由于时间关系,我把学生的这种创作激情延伸到课后,让学生们在课后,运用本节课所学到的“对称”的知识,亲手设计一幅精美的图画。第二天,我回访了一下,发现学生交上来的作品,大部分同学都完成的相当不错,有画的,有剪纸的,有贴画的,看来通过这节课的学习,学生的收获是丰富的,这让我也感到非常欣慰。
数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。但是要达到“学生乐学、教师乐教”的效果,完全是得益于多媒体技术在课堂上的有效辅助。图生动、画形象,不仅激发学习热情,而且让重难点得到了有效的突破,练习的一一呈现,节省了教师板书的时间,大大提高了课堂教学效率。多媒体的辅助教学,能让我们提高教学效率,但是要想真正地用好它,用活它,实现信息技术与学科的有效整合,教师在课前还得付出非常多的心思,从教学素材的收集到课件的制作,无不凝聚了教师的所有心血。
在今后的教学中,我将不断实践、不断地探索信息技术与学科的有效整合,不断地发挥农远工程在中小学教育中的作用,将是我们一线教师今后几年的一项重要课题。
《轴对称图形》教学反思8
在最近的听课活动中,恰巧连续听了几节关于轴对称图形的教学研讨课。以下就听课后的几点思考整理出来,以便大家同时讨论、批判。
一、空间与图形的教学应注重直观感知和更加贴近生活
“课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……”新课标的这一理念强调了数学与生活紧密联系。在教学轴对称图形时,应注意让学生联系自己的生活实际,寻找生活中轴对称图形的踪影,让他们感受到数学与生活的密切联系,学会用数学的眼光看待周围事物,从中体验数学的价值。
轴对称图形有一节课的知识目标是:探究图形中哪一些是轴对称图形,哪一些不是轴对称图形?为了解决这一难点,教师发给学生各种有代表性的平面图形,放手让他们自主去解决。学生通过亲自去折一折,能够很快的辨别出来是还是不是。又趁机让学生再次对这些图形按照对称轴的条数进行分类,这样,学生对轴对称图形又有了新的认识。因为三角形、梯形、是这一部分最容易出错的地方,所以又指导学生对这些图形进行再次总结。这一过程的自主学习,可以随机出示几道判断题。对于知识点的处理,要让学生亲自去感受、去认知、去体验,学生将会对知识掌握得更加牢固。
另外可以促使学生动手做“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪。当学生有不同的剪法时,可引导学生比一比:谁的剪法好?说说怎样剪,剪出来的图形才能对称?这样,让学生在具体实践活动中很自然地引出“对称轴”的概念。这一活动的开展,以激起学生动手操作的兴趣和欲望为前提,将观察、思考、操作有机地结合,让学生充分感知对称图形及“对称轴”的概念。
轴对称图形在现实生活中到处可见,它的实际应用与美的感受到处可见。课下,为了让学生进一步体验这种美,最好让他们做一件轴对称图形的物体,将学到的知识再次融入到生活中。
二、有形象直观转为抽象概念要注意引导方法
教师的语言引导很重要,语言的精确性是引导学生学习的关键。
如有位教师在学生初步感知了抽对称图形的特征之后,让学生自己总结概念。学生在讨论之后说:一个(长方型、一张纸、一片叶)沿着一条直线对折,两侧的图形能够完全重合。这样的图形就是轴对称图形。而教师的本意是想让学生说“一个图形”,可由于引导语言发生错误,(这位老师在课堂上一直问学生手中拿的是什么,学生就说是长方形、树叶,没人说是一个图形,老师就一直逼问。)学生怎么也拗不过来,不知道老师想要什么样的结果,导致再无人敢发言。随后的半节课,出现了很尴尬的局面,而教师也不知该怎么调整,导致教学计划未能顺利地完成。由此说明课堂教学语言的精确性直接关系到知识的生成,如果教师不注意训练自己的语言,很可能导致一节课的失败。
又如另一位教师由于准备不充分,对等腰三角形是否是轴对称图形根本就没考虑在教学内容中。当学生讲到等腰三角形是不是轴对称图形时,由于在学生的学具中根本就没准备。于是,教师就在黑板上用小尺画了一个等腰三角形来讲解。其实,完全没有必要动手画。因为完全可以让学生拿出已经准备好的完全相同的两个直角三角形,拼成一个等腰三角形来演示给学生看。这样,既直观易懂,又省事。
三、要到位,应充分体现合作学习的优越性
合作学习不是简单地把学生分成几个小组,不能把小组合作停留在表面形式上。数学课堂教学中,有很多知识是不需要教师精讲的,应充分挖掘学生的潜能,让学生相互合作,互帮互学。教师只要适时给学生一些点拨,帮助学生去挖掘知识的深度和广度,在具体的数学教学过程中关注更多的深层次的问题。
如一节“轴对称图形”的'小组合作学习的课,练习时,教师给学生设计了一道具有开放性的题目:以小组为单位,让每个学生发挥想象,剪出一些轴对称图形。这个合作题目我们细想一下,是很能体现数学学习的合作学习的。然而教师布置后,学生在事先准备的彩纸上剪出一些轴对称图形,基本上是独立完成的,小组之间几乎没有交流,基本停留在独立学习的层次上,没有真正地讨论和合作,没有发挥小组合作的优势,学习效果没能真正代表本小组的水平。而且在汇报时,教师只是让学生展示了一下自己的作品,没有进行知识的总结和挖掘。仔细思考一下,如果让每个小组利用所剪的轴对称图形拼成一幅美丽的画。不是更能体现合作学习?合作过程中可以让组长分配,学生互帮互学,汇报时说出自己是怎样剪的,正好复习了轴对称图形的特征。
那么教者这样处理,其原因何在?追其根源,主要是教师片面地追求课堂小组合作学习这一形式,对小组合作学习的目的、时机和过程没有进行认真设计,学生的合作流于形式,合作意识不强,只要有疑问,无论难易,甚至一些毫无讨论价值的问题都要在小组内讨论。合作又没有时间保证,有时学生还没进入状态,小组合作学习就在老师的要求下结束了。教师在合作学习中不是个引导者而是个仲裁者,教师只是在按照既定的教学计划和教学设计,把学生往事先设计好的框架里赶。这是典型的应付式、被动式讨论,小组合作学习缺乏深层的交流和碰撞。
《轴对称图形》教学反思9
学生是学习的主体,要让学生成为真正的主人,就必须在数学活动中学习数学,也就是在创造数学中学习数学。通过有层次的练习,提高学生解决问题的能力,巩固所学知识。教学轴对称图形的时候产生了不少的问题,不由的引起了我的深思:
一、动手操作的的确确是学生理解知识的最好手段。学生通过亲自的动手操作,参与知识的形成过程,能把抽象的知识转化为直观,加深学生的理解。我在教学时应该让学生深入地思考,动手操作,理解得不透彻,巩固再多,也只能是事倍功半。在轴对称含义引出时太肤浅,应该多深入地折一折,说一说,让学生从内在自然引出轴对称图形含义。
二、在教学“想想做做1”时可以让学生说一说轴对称图形是左右对称还是上下对称,这样学生在后来的练习中就可以避免一些同学由于只看到左右对称而忽略上下对称导致的错误,减少错误的发生。这一点在备课时我也想到了,但是在左右思考斟酌后还是没有将它运用到我本节课的教学中。以至于出现后来的错误。
三、在教学想想做做5时教师应该先做一个示范,提醒学生不仅要看外面的图形,更要重视中间的图案,也就是说要中间的图案完全对称,这样也可以避免一些个别学生由于理解错误而出错。而且该题的'解决反馈方式可以从一个一个校对改成全面观察校对,以赢得更多的时间去宽裕地解决其他问题。
四、教学的过程中,教师更应该设计很多的环节,来锻炼学生的灵活运用能力。我们在上课时,应该更深一步的挖掘课堂,使课堂上的每一个知识点,都能成为学生解决问题的坚实基石。只有达到这样的目标,我们的课堂才能成为有效课堂,我们的教学才会成为有效教学。
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在一起,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
《轴对称图形》教学反思10
一、设计思路:
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。
二.教学知识点:
在本课的教学过程中,我认为应从这样的几个方面入手:
1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。
2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。
3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
三、总体反思:
首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的'学生都有不同的体会与感受。
其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。
最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。
总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。
八年级数学教学反思5
分式方程在整个初中数学中占有十分重要的地位在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母。
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在本节教学中,学生对于一元一次方程的解法已经十分了解,学生在解方程中一般的方法完全能够解决,在这个问题中不用过多的用时间,所有的时间全部放给学生去练习,重点让学生去练习检验这一步骤。
通过学习,学生感到学的容易,老师教的轻松。教学效果十分理想。
《轴对称图形》教学反思11
本节课是新人教版二年级下册第三单元《图形的运动》第一课时,属于图形与几何部分,学生在一二年级已经认识了简单平面图形与立体图形,能够从侧面、正面、后面对物体进行观察,本单元是学生第一次接触图形的运动。在本节课的教学过程中,我将教学目标定为:
借助日常生活中的对称现象,通过观察、操作、使学生直观认识轴对称图形,能辨认轴对称图形。2.培养学生应用意识,使学生发现生活中的轴对称现象,感受对称的美。
本节课的教学我分为以下几个层次:
1.通过课前小研究的交流,暴露学生的思维盲点。
2.通过对确定是对称的几个图形的研究,使学生感受到证明对称的方法:对折后能够完全重合。进而用这种方法验证刚才不确定是否是对称的.几个图形。
3.利用学生课前通过折一折剪一剪得到的轴对称图形,围绕:你是如何得到这个图形的?为什么要进行对折?为什么只在一边画图?观察展开的剪纸上的折痕,你能发现折痕两边图形有什么特点?等问题,使学生来认识对称轴,明确对称轴两边的图形完全相同,对折后能够完全重合。
4.进行拓展练习,让学生动手折出正方形、长方形、等腰三角形、圆形的对称轴。
教学中存在一下不足:
1.在小组合作折几个基本平面图形对称轴时,应该让学生动手画一画它的对称轴,学生经历过画的过程,就可以避免多次折叠的情况。
2.对对称轴和轴对称图形的强调不够,学生没有会说轴对称图形。
3.学生的双喜字是导致后面重复折叠出现的原因之一,而且教师在大屏幕前示范错误折叠方法,导致学生更加困惑。这是示范例子选取失误。
4.对学生的回答一定要有反馈,是问题要给予解答,不能让学生带着困惑坐下。
5.学生对完全重合的理解不到位,教师在说的时候也将没有完全重合说成没有重合,应该注意语言的准确性。
《轴对称图形》教学反思12
《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。
一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。
二、创设自主学习的条件 苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本
本节课的.难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。
三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。
总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。
《轴对称图形》教学反思13
《轴对称图形的认识》是义务教育课程标准实验教科书数学二年级下册第三单元中的第一课时。本教材是在“折一折、画一画、剪一剪”等活动中人是轴对称图形,知道其基本特征,绘画其对称轴。本节课非常生动有趣,是以二年级学生的特点编排的,是一节动手、想象能力强的课。知识应用的顺序逐步展开,从具体到抽象,从感性到理性,从实践到理论,再用实践检验理论,指导学生认识自然界和生活中具有对称性质的事物,层次分明,循序渐进,体现了知识的形成过程。
这节课符合儿童特点,动手较多,使学生在动手中感受到物体和图形的'对称美,激发学生的学习数学兴趣。孩子们在找生活中的轴对称图形比较容易,也能很容易看出是不是轴对称图形,但是对于教学中的几何图形就相对较难,找不全,看的不太明白;在优化规则图形的对称轴,找不到合适的重点,在教学中应充分教育学生如何找图形的中心,从而能从图形中自如的画出对称轴,而且画的恰到好处。
总之,一节课的时间只是新知识的渗透,想要真正理会知识的应用仅仅一节课是远远不够的,教学练习才是根本。
《轴对称图形》教学反思14
《轴对称图形》是一个较抽象的概念,“识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美”是课程标准中对这一内容的要求。在这节课中,采用多媒体演示、实物教具,让学生在折一折、猜一猜、画一画、剪一剪等动手操作活动中,培养学生的观察、想象和表达的能力。
一、谈谈自己对这节课的教学理解:
教材没有给出轴对称图形的严格的数学定义,只是让学生通过直观理解轴对称图形的特征,如沿对称轴对折后两边完成重合(或用学生最常用的语言说:对折后两边都一样)来描述对轴对称图形的理解。而对于“在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等”的性质,则是安排在三年级下册进行教学,因此这节课认识轴对称图形是为以后进一步研究轴对称图形做铺垫,按照新课标要求,本学期安排认识轴对称图形的`教学中,不再要求学生画对称轴,而是通过对折,观察展开的剪纸上的折痕来理解对称轴的含义。
二、我设计的教学环节:
(一)从直观的生活情景引入教学。
我创设了帮老师挑选风筝的生活情景,让学生通过观察,对比,从中获得对物体的对称现象的空间概念的理解,化抽象为形象,变空洞为具体,使学生初步感知生活中的对称现象。找出生活中的对称现象,从而渗透“生活中处处有数学”的新的“数学思想”。
(二)动手操作,理解新知。
此环节是通过对“对称”现象的理解后,通过动手折一折,让每位学生都参与活动,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时利用多媒体的动画演示,通过直观的演示,让学生初步感知什么是“完全重合”,自主去建构“轴对称图形”的概念,当然这时的表述是不具体的,老师适时点拨,进行示范,规范学生的数学语言,反复让学生折一折,说一说,“像这样对折后,两边完全重合是轴对称图形”。最后再次让学生动手操作,两人一组,判断剩余图形是不是轴对称图形。
(三)猜一猜,剪一剪,运用新知。
“猜一猜”游戏,出示物体、图形的一半,想象另一半,不仅加深对轴对称的认识,还为“剪一剪”活动提供了素材。
“剪一剪”活动,我是先让学生讨论制作轴对称图形的这个动手操作环节,充分培养学生的观察能力、想象能力及表达能力,这样能充分锻炼学生的空间思维的发展,把对称应用到实际中。展示作品,通过欣赏同学的作品,感受数学中对称这一应用让生活变得美丽。此时我利用学生的作品引导学生用自己的话来描述什么的图形是轴对称图形,找出对称轴。
(四)拓展,欣赏生活中的对称美。
三、不足及改进地方:
1、轴对称图形定义引出太早。针对此知识构建教学环节可以略作调整,先建构“对称”,通过动手折“对称图形”的平面图形后,观察留下的折痕,认识对称轴,再出示轴对称图形定义。这样定义会扎根学生脑海。
2、课堂上舍得花时间培养学生的动手能力、表达的能力却占有了探究“圆是不是轴对称图形,它有几条对称轴。”但我想数学课上知识学的不在多少,重要的是学生掌握了学习的方法。虽然此环节没有按计划完成,倘若孩子们的兴趣高涨,有了验证的方法,这个问题课下不就迎刃而解了吗?
《轴对称图形》教学反思15
①联系生活实际,感受美
教师在教学中注意找准学生的学习起点,让学生的原有经验、原有知识,在教师的引导下通过操作实践、自主探索、合作交流等过程,建立起新旧知识间的桥梁,让学生的思维上升到更高的层次。如课始的剪纸导入,教学中所用的中国香港特别行政区区徽、世界各国国旗、对称建筑等素材,也都是来源于生活。让学生感受到生活中物体的对称美。
②重视概念理解,思维美
概念是用最简洁的语言揭示事物最本质属性。数学概念是数学思维的基本单位。只有真正搞懂了概念,掌握其实质,才能学好数学。新课标指出,对重要的数学概念的学习应当逐级递进、螺旋上升,以符合学生的数学认知规律。如本课对重要概念“对折后能完全重合的图形是轴对称图形”的教学,就是采用分层递进,逐步深入的方法。第一阶段让学生认识到“完全重合”就是“大小、形状要一样”。第二阶段通过对“中国香港特别行政区区徽”是否是轴对称图形的辨析,让学生认识到 “完全重合”是指对折后,外面的形状及里面的图案都要一样。这样有利于学生不断加深对概念的理解,并体会数学思维的美。
③鼓励操作实践,创造美
苏霍姆林斯基说:“手是意识的伟大培育者,又是智慧的创造者,要让学生动手做科学,而不是用耳听科学。”新课标也指出,动手实践是学生学习数学的重要方式。教师要为学生留有足够的探索和交流的空间,使学生经历知识形成的过程,有利于学生理解知识,发展思维。如课中教师让学生做轴对称图形的`活动。在动手实践的过程中,学生掌握了知识,学会了思考,并且感受到亲手创造出美的自豪感。
④关注情感体验,升华美
知识与技能、过程与方法、情感态度与价值观是新课标倡导的数学学习三维目标。被誉为“人本主义之父”的美国心理学家卡尔。罗杰斯认为:情感、态度、价值观是一个人参与实践过程中对各种经验的体验结果。因此,教师应当为学生创设轻松有趣的学习氛围,学生通过动手操作、自主探索、合作交流等学习方式自信地学习数学知识,发展思维。如课始剪的爱心,判断是否是轴对称图形时,出示的中国香港特别行政区区徽等都是在“润物细无声”似的,对学生进行奉献精神、爱国主义的教育,使其产生积极的情感。
学生在动手制作轴对称图形时专注的表情,看到自己的作品贴在黑板上,得到其他同学赞美时那喜悦的表情,是课堂中多么美好的景色呀!正如苏霍姆林斯基说的, “成功的欢乐是一种巨大的情绪力量,是继续学习的一种动力。”结尾部分,欣赏生活中的对称现象,使学生的思绪插上数学的翅膀而飞扬,真切地感受到数学的美,情感得到了升华。
总之,数与形的有机结合才组成了这千姿百态的世界。让我们带领学生在数学活动中去感受那充满魅力的数学美,并用自己聪慧的头脑与灵巧的双手去创造美。
【《轴对称图形》教学反思】相关文章:
《轴对称图形》教学反思06-14
《轴对称图形》教学反思08-12
《轴对称图形》教学反思06-16
轴对称图形教学反思06-12
轴对称图形的教学反思07-18
轴对称图形的数学教学反思05-10
轴对称图形教学反思简短01-21
【精选】《轴对称图形》数学教学反思03-21
《轴对称图形》数学教学反思03-24
(荐)轴对称图形教学反思07-23