圆柱的表面积教学设计

时间:2025-08-08 08:15:01 教学设计 我要投稿

圆柱的表面积教学设计

  作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教学设计,借助教学设计可以更好地组织教学活动。那么大家知道规范的教学设计是怎么写的吗?下面是小编整理的圆柱的表面积教学设计,欢迎大家分享。

圆柱的表面积教学设计

圆柱的表面积教学设计1

  【教学目标】

  1、使学生理解圆柱体侧面积和表面积的含义。

  2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3、体验成功与失败的收获,体会合作的愉悦。

  【教学重点】动手操作展开圆柱的侧面积

  【教学难点】圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  【教具准备】圆柱表面展开电脑动画展示

  【学具准备】圆柱形茶叶罐、自制的圆柱体纸盒2个、剪子、尺子。

  【教学过程】

  一、创设情境,引起兴趣。

  1、同学们曾经自己研究出长方体和正方体表面积的计算方法,回忆一下,当时大家是怎样推导这些立体图形表面积的?(学生会想将图形表面展开)

  2、拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?

  怎样求这个茶叶罐用多少铁皮?(体会就是求圆柱表面积。在学生跃跃欲试的时候进行下一步的操作活动)

  二、自主探究,发现问题。

  研究圆柱侧面积

  拿出自制的圆柱体纸盒,1.猜想将它的侧面展开,会是一个什么样的图形。

  2.独立操作用自己喜欢的方式展开,验证刚才的猜想。

  “用自己喜欢的方式”展开可能会出现很多种可能,比如斜着剪、拐弯剪等,对各种可能情况的处理方式教师应该做到心中有数。

  3.观察对比观察这个图形各部分与圆柱体有什么关系?

  4.小组交流能用已有的知识计算它的面积吗?

  5、小组汇报。(选出一个学生已经展开的`图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积

  即长×宽=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧==C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2πr×h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的第二个圆柱纸盒用此法展开)

  研究圆柱表面积

  1、求茶叶罐用多少铁皮,就是求什么呢?如何求?试一试。

  学生测量,计算表面积。

  2、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

  3、动画:圆柱体表面展开过程

  三、实际应用

  1、填空

  圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

  2、要求一个圆柱的表面积,一般需要知道哪些条件()

  3、教材第六页试一试。

  四、回顾全课

  本节课你收获了什么,有什么遗憾。

  【板书设计】

  圆柱体的表面积

  圆柱的侧面积=底面周长×高→S侧=ch

  长方形面积=长×宽

  圆柱的表面积=圆柱的侧面积+底面积×2

圆柱的表面积教学设计2

  教材内容和在本册教材中的地位:

  《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。

  学情分析:

  学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重难点:

  重点

  圆柱表面积的计算。

  难点

  圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。

  教学过程

  一、激趣导入

  (复习圆柱体的特征)

  师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

  师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

  引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

  二、目标定向

  1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、我能通过对已有知识的迁移,探索新知识。

  三、自主合作

  (一)圆柱表面积的意义。

  设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

  2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。

  (二)根据条件,计算圆柱的底面积。

  圆柱的底面是圆形,同学们会求它的面积吗?

  (三)圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  设疑:圆柱的侧面是个曲面,怎样计算它的.面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  2、计算圆柱体的侧面积。

  (四)求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算?

  四、交流展示

  (一)汇报圆柱表面积的意义。

  底面积×2+侧面积=表面积

  (二)圆柱体侧面积的计算

  1、小组合作探究。(剪圆柱形纸筒)

  2、汇报交流研究结果,各小组展示。

  3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  (三)以小组为单位自己做例4,做完组长检查。

  五、拓展延伸

  1、求出下面各圆柱的侧面积.

  (1)底面周长是1.6米,高是0.7米

  (2)底面半径是3.2分米,高是5分米

  2、计算下面各圆柱的表面积.(单位:厘米)

  (1)底面直径是12米,高是16米

  (2)底面半径是3.2分米,高是5分米

  3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?

  板书设计

  圆柱的表面积

  底面积=圆面积

  底面积×2+侧面积=表面积

  课后反思:

  我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。

  1、实践操作

  在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。

  2、精讲多练。

  新知的获得时间要短,课后的练习要从易到难。

  本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。

  数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。

圆柱的表面积教学设计3

  教学目标:

  1、理解圆柱侧面积和圆柱表面积的含义。

  2、掌握圆柱侧面积和表面积的计算方法。

  3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情景

  1、复习圆柱的特征。

  2、大屏幕出示问题,学生口头回答:

  (1)一个圆形花池,直径是5米,周长是多少?面积是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽

  二、探究新知

  1、教学圆柱的侧面积。

  (1)大屏幕出示课题:圆柱的表面积。

  (2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。

  (3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的.长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高

  2、小结。

  要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?

  3、理解圆柱表面积的含义。

  观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积

  4、教学例4。

  (1)大屏幕出示例4的题目。

  思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么? (2)学生试着解答。

  (3)全班交流:为什么只求了一个底面面积呢? (4)小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  5、巩固练习:完成第14页的“做一做”。

  三、课堂小结

  圆柱的表面积指的是哪几个面?如何求圆柱的表面积?

  四、作业

  完成练习二的5——7题。

  五、思维训练

  1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。

  2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。

圆柱的表面积教学设计4

  【教学目的】:

  1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

  2、培养学生分析推理,解决实际问题的能力。

  3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。

  4、在计算机操作中培养学生的信息素养。

  【教学重点】:

  使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

  【教学难点】:

  在计算机操作中培养学生的信息素养。

  【教具准备】:

  计算机辅助教学课件一套。

  【教学过程】:

  一、创设情境,提出问题。

  1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)

  2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)

  二、自由选择,自学新知。

  1、电脑显示: 自学新知a 自学新知b

  说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。

  2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。

  (展开侧面)

  自学新知a:

  (1)

  长方形

  底面周长

  高

  长方形面积=

  圆柱的侧面积=

  (2)

  底面

  底面

  侧面

  圆柱表面

  (动画)

  圆柱的表面积=

  (3)小组讨论:

  (1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?

  (2)求圆柱的底面积必须具备什么条件?

  自学新知b:

  (1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。

  长方形面积= ×

  圆柱的侧面积= ×

  (2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,

  所以:圆柱的`表面积= +

  (3) 小组讨论:

  (1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?

  (2)求圆柱的底面积必须具备什么条件?

  三、初步应用,尝试例题。

  学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)

  电脑显示:

  例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)

  例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。

  四、灵活选择,星级题库。

  1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。

  2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)

  题库:

  1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?

  2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?

  题库:

  1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?

  2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?

  题库:

  1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?

  2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)

  五、课外知识,开阔视野。

  1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。

  2、学生点击课外知识:链接北京科教信息网

  1、师小结本节课所学内容。

  2、学生点击布置作业,查看作业内容:

  给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。

圆柱的表面积教学设计5

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是xxx 、xxx和xxx。

  2、底面是xxxx形,它的面积=xxx。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由xxx和xxx组成。

  (2)圆柱的表面积的.计算方法:

  圆柱的表面积=xxx

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。

  列式计算:

  ① 帽子的侧面积=xxx

  ② 帽顶的面积=xxx

  ③ 这顶帽子需要用面料=xxx

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

圆柱的表面积教学设计6

  教学课题:

  圆柱的表面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在研究展开后长方形的长、宽与圆柱的关系时,通过让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重点:

  圆柱表面积的计算。

  教学难点:

  圆柱体侧面积计算方法的推导。

  教法运用:

  本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时通过多媒体的辅助教学,发挥互联网搜索引擎功能,使新授和练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

  学法指导:

  采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:

  圆柱体教具、多媒体课件。

  学具准备:

  圆柱形纸筒、茶叶桶。

  教学过程:

  一、检查复习,引入新课

  1、复习圆柱体的特征

  师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

  1备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

  【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

  三、解决问题,强化认知。

  (一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

  (二)根据要求练习。

  1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

  2、一台压路机的滚筒宽1、2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

  3、做一个无盖的'圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

  讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

  四、课堂回顾,总结提升

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原

  3思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  五、合理利用现代化教学手段辅助教学。

  围绕课的重难点及学生能力的培养,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。在教学圆柱表面积含义时动画闪烁圆柱各部分的名称,测量并计算圆柱底面积时动画闪烁圆内直径的测量方法,求圆柱茶叶罐侧面积时呈现茶叶罐侧面包装纸,利用圆柱表面积解决生活中的实际问题时,课件呈现圆柱应用的实物图等等,形象直观,加深了学生对表面积实际计算意义的直观认识和理解,也使学生感受到了数学与现实生活的密切联系。

圆柱的表面积教学设计7

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是x、x和x。

  2、底面是x形,它的面积=x。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个x形。它的长等于圆柱的x,宽等于圆柱的x。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的.是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=x,所以圆柱的侧面积=x。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。

  ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的x和x这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由x和x组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的x。需要注意的是厨师帽没有下底面,说明它只有x个底面。

  列式计算:

  ①x帽子的侧面积=

  ②x帽顶的面积=

  ③x这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

圆柱的表面积教学设计8

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的'底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

圆柱的表面积教学设计9

  设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的`过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

圆柱的表面积教学设计10

  教学内容:

  九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

  教学目标:

  1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:

  理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:

  根据实际情况来计算圆柱的表面积。

  教学过程:

  一、复习

  下面()图形旋转会形成圆柱。

  二、认识侧面积的意义和计算方法。

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

  使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  圆柱的侧面积=底面周长×高

  长方形的面积=长×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  三、认识表面积的意义和计算方法。

  1、出示例3中的圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  ⑴各自练习,并指名板演。

  ⑵对照板演,讨论:

  这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?

  想一想:如果知道的是圆的周长呢?

  四.总结反思

  1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?

  畅谈体会。

  五、巩固应用

  1.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  2.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?

  教学反思:

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的`侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

圆柱的表面积教学设计11

  教学内容:

  青岛版教材五四分段五年级下册第三单元第二个信息窗圆柱的表面积。

  教学目标:

  1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

  2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

  3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

  教学难点:

  圆柱侧面积计算公式的推导过程。

  教学用具:

  茶叶盒,剪刀,计算器。

  教学过程:

  一、创设情境,导入新课

  师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)

  二、动手操作,探究新知

  1.介绍圆柱的侧面积、底面积和表面积。

  师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)

  2.创疑激趣。

  师:我们知道,圆柱的底面是圆,我们已经会求圆的.面积,可是圆柱的侧面是一个曲面,我们又该怎样求它的面积呢?

  3.小组合作探究。

  师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)

  4.小组汇报。

  5.教师小结,课件演示。

  师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

  6.学习计算圆柱表面积。

  师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)

  三、运用知识,解决问题

  师:下面我们便利用学过的知识解决一些问题。

  1.只列式不计算。订正时,让学生说想法。

  2.完整解答下面各题。

  让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)

  四、知识拓展

  将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

  师:增加了几个面?是怎样的两个面?

  (课件演示)

  五、全课总结

  师:通过本节课的学习,你有什么收获?

圆柱的表面积教学设计12

  一、教学目标:

  1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。

  3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,数学与生活的联系。

  二、教学重难点

  教学重点:应用圆柱体侧面积和表面积的计算方法,解决实际问题

  教学难点:探究并推导出圆柱侧面积、表面积的计算公式。教学准备:实物圆柱体、多媒体课件

  三、新授课

  (一)、温故引新巧妙入境

  1、上节课,我们一起学习了一种新的立体图形,是什么?在日常生活中我们也见到过许许多多的圆柱形物体,想一想,它们有什么共同特征?

  2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!

  今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)

  (二)、情境探究引出主题(1)、出示产品订货单 产品类型:薯片盒

  产品规格:底面半径为3厘米,长10厘米。订购数量:10000个 交货日期:20xx年5月13日 订购单位:苗苗副食品加工厂 订货时间:20xx年4月27日

  如果你是这家工厂的老板,你首先会考虑什么问题?他该购进多少材料呢?大家愿不愿意帮他解决这个问题?

  (三)、动手操作结合课件理解重难点

  1、认识表面积。

  请同学们拿出课前准备的圆柱纸筒,现在假如它就是一个薯片盒,你们能算出做这样的一个薯片盒,需要多少材料吗?其实这就是求圆柱形薯片盒的?

  以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)

  那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。

  2、探究圆柱侧面积的求法。

  拿出你们带来的圆柱形物体,动手操作,去探究,去发现!在探究之前,请先看老师给你的探究提示。(大屏幕出示探究提示:a、你能把圆柱的侧面转化成我们已学过的平面图形吗?

  b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)

  先自己思考,然后再小组内讨论。

  汇报各组的'发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。

  老师看大多数同学都把圆柱的侧面转化成长方形,那这个长方形与圆柱的哪部分有关系,有什么关系?谁来继续汇报?

  真的像同学们说的这样吗?请看大屏幕!

  真的像许多同学说的那样,圆柱体的侧面沿高剪开后是一个长方形,长方形的宽相当于圆柱的高,那么,长方形的长呢?请同学们认真看大屏幕!说说你看到了什么?

  看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗? 你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)

  3、完成完整的表面积推导公式。

  (四)、巩固应用拓展提高

  1、基本练习

  求圆柱体的侧面积,只列式,不计算 a、底面周长 10米,高0、5米 b、底面半径2分米,高5分米 c、底面直径20厘米,高5厘米 求圆柱体的表面积,只列式,不计算 a底面周长10米,高0、5米 b底面半径2分米,高5分米 c底面直径20厘米,高5厘米

  2、变式练习

  a现在,你能帮助加工店的老板解决问题了么? 思考:

  生活中求一个圆柱形物体的用料情况时,是不是都得用:侧面积加两个底面积呢?举例说明。课件出示

  要求下列圆柱形物体用料的面积,应计算哪些面的总面积? 油桶、笔筒、下水管、通风管

  通过这道题,你想提醒提醒大家什么? b想想,在练习本上做下面的题

  (1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

  (2)、一个圆柱底面直径是5厘米,把它的侧面展开正好是一个正方形,它的侧面积是少平方厘米?

  (3)、一个圆柱形水池,从池里面量,底面直径是4米,深1.5米。在池的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?

  3、发展练习

  (1)、把一根长2.1米,底面半径是0.5分米的圆柱形钢材平均截成3段,表面积增加了多少?

  (2)、做一个直径是30厘米的铁皮烟囱,高3.2米,接口处占2厘米,至少要用铁皮多少平方米?

  课堂小结:通过本节课你有哪些收获? 布置作业:

圆柱的表面积教学设计13

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的'长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱的表面积教学设计14

  教学内容:六年级第十二册

  教学课时:第二单元第二课时 教学目标

  1、认识圆柱的表面积,理解圆柱表面积的含义.

  2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.

  3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.

  重点:认识圆柱的表面积,理解圆柱表面积的含义.

  难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:

  1、圆柱体教具一个

  2、学生每人准备圆柱形模型两个;

  剪刀;

  教学过程:

  一、复习引入

  1、圆柱有哪些特征?它各部分名称叫什么?

  2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.

  3、引入新课。

  二、新课教学

  (一)出示学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  (二)圆柱的侧面积

  1、出示自学提示:

  (1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?

  (2)、推导出圆柱体侧面积的计算公式。

  小组合作注意:组长负责次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  3、推导公式。

  侧面积=底面周长×高

  4、口答

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。

  (二)、圆柱的表面积

  1、出示自学提示:(1)、思考怎样求圆柱体的表面积?

  (2)、讨论:求圆柱体的表面积需要知道哪些数据?

  小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。

  2、学生汇报交流。

  3、推导公式。

  圆柱的表面积=底面积×2﹢侧面积

  (三)运用公式计算。

  1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。

  2、求上面各圆柱体的表面积(分步口答)

  3、出示例3 学生独立完成.指名板演,然后小组内交流。

  教师:注意,这里不能用“四舍五入”法取近似值.在实际生活中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫进一法.

  三、课堂小结

  大家回顾一下今天我们学了什么内容?计算时要注意什么? 《圆柱的表面积》教学反思

  屏南实验小学 韦 斌

  整个教学过程,学生兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;

  引导学生在应用中加深认识,形成能力。

  动手实践,主动探索和合作学习是学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。

  本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。

  教师为学生提供了基本题以及多向思维的,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的.快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。

  总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。

  学习目标:

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

  3、认识取近似值的进一法。

  4、学习推导方法。

  自学提示:

  1、认真观察自己手中的长方形,思考这个 长方形与圆柱体的哪一部分有关系?

  2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽 等于圆柱体的(),因为长方形的面积等 于(),所以圆柱体的侧面积等于()。

  自学提示:

  1、思考怎样求圆柱体的表面积?

  2、讨论:求圆柱体的表面积需要知道哪些数据? 小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。

  求下面各圆柱体的表面积

  求下面各圆柱体的侧面积。(只列式不计算)

  1、底面周长1.6米,高是0.7米。

  2、底面半径是3.2分米,高是5分米。

  3、底面直径是10厘米,高是25厘米。

  目标检测:

  一个没有盖的圆柱形铁皮水桶,高 是24厘米,底面直径是20厘米,做这 个水桶要用铁皮多少平方厘米?

  (得数保留整百平方厘米)

  拓展题:

  一个圆柱体的侧面展开是一个边长为 25.12厘米的正方形,求这个圆柱体 的表面积。

  给下面的物体分类。

圆柱的表面积教学设计15

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的'两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积 + 一个底面积×2 = 表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长

  ×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

【圆柱的表面积教学设计】相关文章:

《圆柱的表面积》教学设计09-23

圆柱的表面积教学设计10-07

《圆柱的表面积》教学设计10-31

《圆柱的表面积》教学设计15篇05-25

“圆柱的表面积”教学反思12-17

《圆柱的表面积》教学反思07-06

《圆柱的表面积》教学反思09-12

圆柱的表面积教学反思10-03

《圆柱表面积》教学反思11-05