《乘法分配律》教案(集合15篇)
作为一名教学工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编精心整理的《乘法分配律》教案,仅供参考,大家一起来看看吧。

《乘法分配律》教案1
教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。
教学过程:
一、复习
教师出示式题:
1.(35+65)×372.35×37+65×37
3.85×(174+26)4.85×174+85×26
5.(80+8)×256.80×25+8×25
7.32×(200+3)8.32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学算第1题和第3题,第4、5、6组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做得快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例7。
(1)教师出示例题:计算102×43。
教师:这道题是一个三位数乘一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律。)
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
(2)教师出示例题:计算9×37+9×63。
教师:这道题是要计算两个乘积的.和。
“仔细看一看这道题里的两个乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?”(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师:这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概括:首先,要计算的是两个乘积的和;两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
结语:过去我们做口算乘法时,实际上已经应用了乘法分配律。让学生自读第65页的相关内容。
三、课堂练习
做练习十四的题目。
1.第2题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”
2.第3题,先让学生自己计算。核对时让学生回答:
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教师先把算式38×29+38写在黑板上,再引导学生想:从表面上看这道题不是两个乘积的和,但是题中的乘法有因数38,后面所加的数恰好也是38,由此我们可以想到如果所加的数是38乘一个数,那时我们就可以用乘法分配律了。提问:
“想一想怎样使所加的38变成38与一个数相乘,而且乘积仍是38?”教师同时板书:38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
《乘法分配律》教案2
教学目标:
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重难点:发现并理解乘法分配律。
教学准备:多媒体课件。
教学流程:
一、创设情境,导入新课。
师生谈话,引入主题图:
短袖衫32元,裤子45元,夹克衫65元。
师问为了穿着统一漂亮,有几种配套的穿法。
生回答。
二、自主探索,合作交流。
1.课件出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×5 65×5+45×5
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的.所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b) ×c=a×c+b×c
9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.算一算,比一比,每组中哪一道题的计算比较简便。
(1) 64×8+36×8 25×4+25×2
(64+36)×8 25×(4+2)
让学生体会乘法分配律可以使计算简便。
3.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
4.课件出示:买5件夹克衫比5条裤子贵多少元?
生口答,并完善乘法分配率。
四、全课小结
师问今天你有什么收获?
《乘法分配律》教案3
教学内容:北师大版小学数学四年级上册,第48——49页内容
目的要求:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:探索发现规律,体会理解乘法分配律。
教育点:使学生通过探索发现规律,体会探索的乐趣,从而乐于探索。
教学准备:课件一套
教学过程
一、复习导入
1、口算: 25×4= 125×8 = 25×9×4= 18×25×4=125×16= 75+25= 89×100= 268×56+256×44= 要求学生说出部分题的口算依据及简算过程;最后一题,学生不会,师快速口算结果,形成悬念。
2、谈话导入
上节课,经过同学们的探索,我们发现了乘法交换律和结合律律,并会应用这些定律进行简便计算,今天咱们继续探索,看能否发现乘法还有没有其它规律。(板书:探索与发现三)
二、探索新知
1、出示情景图
师:这是工人师傅,为立新幼儿园厨房的某一墙面镶嵌的瓷砖。
引导:
(1)先估算一下,一共贴了多少块瓷砖?
(2)验证估算的结果。
(3)回报验证的方法和结果。
(4)比较算式及结果的异同。
2、师举例让学生验证是不是也有其特征。(40+4)×25和40×25+4×25)
3、观察讨论算式的特点。
计算后,观察比较:
师提问:这两个算式的'左边、右边有什么共同特点?每个算式的左右两边有什么特点?两边的结果怎样?
学生可能回答:
(1)两个算式:左边都是三个数,并且是两个数先加,再和另一个数相成;
右边都是两边相乘,中间相加,并且都乘以同一个乘数。 (2)每个算式:左边是两个数的和与一个数相乘;
右边是这两个加数都与这个数相乘,再把积相加。
(3)结果:左右两边的结果相同
4、学生举例验证。举例后交流,注意:举例是否符合要求;交流不同算式的共同特点。
5、要求学生用字母表示:(a + b)×c = a×c + b×c
这叫做乘法分配律
(板书:——乘法分配律)
6、寻找简算原因:学习乘法结合律和交换律可以使计算简便,那么学习了乘法分配律能否简便,比较上面两个算式,看哪边的计算简便,为什么?
7、试一试
利用乘法分配律,计算下列各题
(80+4)×25 34×72+34×28
(做后说做题依据及为什么这样简便?)
三、课堂总结
谈收获。这节课,通过探索你发现了什么?乘法分配律有什么特点?在什么情况下,怎样使计算简便?比较乘法结合律与分配律的异同。
四、练一练
1、判断
(1)(20 + 4)×25 =20 ×4 + 4 ( )
(2) 35×(2 + 20)=35×2×20 ( )
(3)(80 + 4)×125 = 80×125 + 4×125 ( )
2、填一填
(1)(10+7)×6=□×6+ □ ×6 (2)8×(125+9)=8× □ +8×□
(3)7×48+7×52=□×(□+□)(4)25×(4+8)=□× □+□×□
五、六、拓展
思考、讨论:
(1)68×101= (2)98×99 + 98 = (3)189×98 — 89×98=
(讨论后,下节课向老师汇报,不明白的下节课一同研究)
板书:
《乘法分配律》教案4
教学目标:
略
学问与技能:
1、让学生在解决问题的过程中发觉并理解乘法安排律,初步了解乘法安排律的应用。
2、使学生会用字母表示乘法安排律。
3、能用乘法安排律进展简便计算。
过程与方法:
1、使学生结合详细的问题情境经受探究乘法安排律的过程,理解并把握乘法安排律。
2、学生在发觉规律的过程中,进展比拟、分析、抽象、概括的力量,增加用符号表达数学的意识,进一步体会数学与生活的联系。
情感态度与价值观:
1、感受数学学问之间的内在联系,培育学生发觉、探究的意识。
2、让学生感受数学规律确实定性和普遍适用性,获得发觉数学规律的愉悦感和胜利感,增加学习的兴趣和自信。
重点:
理解乘法安排律的意义,并归纳出定律,会运用乘法安排律。
难点:
抓住等号左右两边算式的特征和联系,理解乘法安排律的意义。
教学过程:
一、谈话导入,提醒课题。
师:昨天,同学们通过微视频自学了什么内容?(乘法安排律)
这节课我们就进一步深入的学习乘法安排律。
二、沟通自主学习任务单
师:通过观看《乘法安排律》的微视频,你知道了什么?
(乘法安排律的意义,如何理解乘法安排律)
(一)小组沟通:任务一
1、任务一:乘法安排律的意义
从“举例”、“意义”和“用字母表示”这3点绽开沟通。
2、学生汇报:
师:谁有不同的举例?像这样的例子可以举多少个?(很多个)
通过举例,你有什么发觉?
(提醒乘法安排律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法安排律)
用字母表示:(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
师:“分别相乘”你是怎样理解的?请结合字母表示说一说。
(二)小组沟通:任务二
1、任务二:理解乘法安排律
从“画图”、“乘法的意义”这2点绽开沟通。
2、学生汇报:(画图理解)
师:谁有不同的画法?(课件演示)
认真看图和等式,谁看懂了?说给大家听。
1、求这个长方形的周长。
4×2+6×2=(4+6)×2
长方形的周长=(长+宽)×2
师:看来,我们在三年级学习的`长方形的周长公式中就孕伏了今日学习的乘法安排律。
2、组合图形大长方形的面积:
4×2+6×2=(4+6)×2
师:计算组合图形的面积中也有乘法安排律,利用数形结合的方法来理解乘法安排律,很好。
3、结合乘法安排律来理解多位数乘法的笔算。
25实际上是把12分成25×12×12()+()进展计算=25×(+)
师:同学们能联系旧学问学习新学问,真棒!只要你做一个有心人,你就会发觉其实数学中有些新、旧学问是有联系的。
4、乘法的意义理解乘法安排律。
《乘法分配律》教案5
教学内容:
教科书例6、例7及“做一做”,练习十四。
(一)知识教学点
1.使学生理解乘法分配律的意义。
2.掌握乘法分配律的应用。
(二)能力训练点
通过观察、分析、比较,培养学生的分析、推理和概括能力。
(三)德育渗进点
通过乘法分配律的应用,激发学生的学习兴趣。
(四)羹育渗遇点
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验
(D识迁移类推,通过合作学习,学会知识。
1.教学重点:乘法分配律的意义及应用。
2.教学难点:乘法分配律的反应用。
小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。
(一)锚垫孕伏
1.口算:(卡片)
25× 17×4 125×24
引导学生说一说运用了什么运算定律,这样计算有什么好处?
2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)
(6+4)×5 6×4+4×5
(二)探究新知
1.导人新课:
前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使
一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)
2.教学例5:
(1)出示例5:
(2)引导学生观察、讨论、交流。
(3)教师引导学生观察两种算式,发现了什么?使学生懂得:
①两个算式相等。
②两个算式可用等号连接。
学生答,教师板书:(18+7)×6=150
18×6+7×6二150
(]8+7)×6二18×6+7×6 .
(4)教师出示:20×(15+9)
20× 15+20×9=480
20×(15+9)二20×15+20×9
组织学生分组讨论,使学生明确:每组中算式所表示的意义。
反馈练习:按题目要求,请你说出一个等式。(投影出示)
(——+——)×——=——×——+——×——
学生答,教师填写投影。
(通过学生的`观察、分析、实践,使学生初感乘法分配律的知识,填空题的发
散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐
达到水到渠成。)
教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:
①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘
数和乘数的位置。)
②两个加数分别同一个数相乘再把两个积相加。
③等号左右两边两个算式相等。
3.概括定律:
通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生
结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。
4.反馈练习:
横线上能填几?为什么?
(32+35)×4二——×4+——×4
(62+12)×3=——×——+——×——
教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个
数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学
生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)
5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学
们观察我们练习的乘法结合律,在运算上有什么特点?
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加
数分别同这个数相乘,再把两个积相加比较简便。
6.教学例7:
(1)出示例7:
102×43
=(100+2)×43
=4300+86
=4386
想:把102看成(100+2),再用43分别去乘100和2,可以用口算
用了乘法结合律。
教师说明:熟练后第二步可以不写,画上虚线。
(2)出示9×37+9×63
①组织同学讨论。
②组织同学阅读教科书第65页。
③启发学生明白了什么?
(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学
生知识迁移类推,通过合作学习,能够自己学会新知。)
(三)巩固发晨
1.练习十四第1题。
2.在横线上填上适当的数。
(”(24+8)×125=一×一+一×一
(2)25×(20+4)=25×——+25×——
(3)45×9+55×9=(——+——)×——
(4)8×27+73×8=8×(——+——)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相
同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×5 24×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×8 - 10×8+125× 8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42十29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29)
(2)与6×8—6×8相等的式子是( )
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9
5.练习十四第4题,投影出示。
6,分组计算练习十四第3题。
(四)课堂小结
③28×42×29
今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分
别与一个数相乘,再把两个积相加。
练习十四第2题
《乘法分配律》教案6
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。
3、发挥学生主体作用,体验探究学习的快乐。 教学重点:指导学生探索乘法的分配律。 教学难点:乘法分配律的应用。
教学准备:课件、口算题、例题、练习题等。 教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。 教学流程:
一、设疑导入
师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用? 生:能够使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)
二、探究发现
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)
师:这道题算得怎样不如刚才的快啊? 生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不一样? 生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
生:我是根据乘法分配律算的。
师:你是怎样明白的?你明白什么是乘法分配律吗? 生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。
师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)
2。验证。
师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)
小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的`和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?
(学生计算,并汇报。)
……
师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
3。结论。
生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c
师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。
【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】
三、练习应用
(生练习应用定律。)
师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)
《乘法分配律》教案7
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:乘法分配律 P28-29 例1、例2
教学目标:
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点:理解掌握乘法分配律。
教学难点:乘法分配律的得出及其运用。
教学安排:
一、 观察与思考:
1、 出示例1:(1)看下图计算,有多少个小正方体?
A、用实物演示引出两种算法。
(5+3)2=16(个) 52+32=16(个)
B、观察以上两式得到:(5+3)2=52+32
2、 出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)4=200(元) 304+204=200(元)
即:(30+20)4=304+204
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)6=42(角) 26+56=42(角)
即:(2+5)6=26+56
3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的、先算和再算积与先算积再算和是一样的')
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、 讨论与归纳:
1、 出示问题,读读想想。
A、 以上三组算式分别先算什么?再算什么?
B、 它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、 质疑。
为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、 用字母表示乘法分配律。
(A+B)C=AC+BC
三、 练习:
1、 根据乘法分配律填上适当的数或运算符号。
(8+6)3=8○3○6○3
(25+9)40= 40+ 40
(56+ )3=56 +8
2、 判断:
13(4+8)=134+8 ( )
13(4+8)=138+48 ( )
13(4+8)=134+138 ( )
四、 简便运算:
1、 出示例2:(125+70)8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、 选择题:
1624+8424的简便算法是( )。
A、(16+24)84 B、(16+84)24 C、(1684)24
3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)
(25+9)8 29175+2529 48128-2848 7599+75
4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41□+5923 □□+6328
五、 小结:
1、 乘法分配律及字母表达式。
2、 运用乘法分配律应注意什么?
①运算符号 ②分配合理
《乘法分配律》教案8
【教学内容】
人教版四年级下册课本36页例3.
【教材与学情定位】
本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。
【设计理念】
1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。
2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?
2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?
【教学目标】
1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。
2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。
【教学重点】
从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。
【教学难点:】
1.理解乘法分配律,体会其优越性。
2.乘法分配律应用中出现的问题如何有效突破。
【教学过程】
1、同学们我们前面学习过两位数乘两位数,
出示:25×14=
算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。
(师把25×14写在黑板左侧,指生上展示台展示自己的.书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)
过程:25
×14
100 25×4
25 25×10
350
问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)
师随生动:14分成(10+4)的和乘25
指25×14表示什么?14个25是多少
指(10+4)×25表示什么?14个25是多少?
指10×25+4×25表示什么?14个25是多少?
可以画等号吗?可以
那下面这几个算式表示什么?也可以这样写吗?
【设计意图】
本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。
出示15×12= 23×16=
学生观察:发现都是两位数乘两位数的运算,表示可以。
师指生描述算式的含义并由学生独立完成算式转换。
学生通过验证认识到:
15×12=(10+2)×25=10×15+2×15
23×16=(10+6)×23=10×23+6×23
16×25=(10+6)×25=10×25+6×25
现在还想等吗?
15×12=(10+2)×25=10×15+2×15
23×14=(10+4)×23=10×23+4×23
16×25=(10+6)×25=10×25+6×25
生:相等。
师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?
生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。
师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)
【设计意图】
本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。
师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?
生:可以。
2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律
(20+3)×37=
(10+9)×23=
(32+25)×74=
学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?
生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;
左侧三个数,右侧四个数;
……
小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。
【设计意图】
通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。
师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?
生一:(10+5)×74=10×74+5×74
同意的举手,鼓励的掌声送给他
生二:(10+7)×52=10×52+7×52
生三:(10+9)×24=10×24+9×24
生四:(30+2)×52=52×30+52×2
【设计意图】
学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。
师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。
(16+△)×51=
(△+■)×○=
引导出字母形式:
(a+b)×c=
师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。
【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】
汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍
小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。
字母形式:(a+b)×c=a×c +b×c
也可以写成a×(b+c)=a×b+a×c
【设计意图】
本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。
3、看谁算的又对又快:
(4+6)×27 ○ 4×27+6×27
(14+86)×39 ○14×39+86×39
(100+1)×37○100×37+1×37
3×62+5×62+2×62=
集体订正,说学生的做法,怎么做的?怎么想的!
【设计意图】
通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!
4判断:
(1)(36+27)×5=36×5+27×5 ( )
(2)(13+79)×12=13+79×12 ( )
(3)(34+61)×43=34×61+43 ( )
(4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )
手势表示,对的举对号,错误的举起十字。
【设计意图】
本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。
5、情景剧:生活中的握手问题:
两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。
【设计意图】
学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。
6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?
师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。
《乘法分配律》教案9
教学内容:教科书第64页例7,练习十四的第3一10题。
教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。
教学难点:应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。
教学过程:
一、复习
教师出示试题:
1、(35+65)×37
2、35×37+65×37
3、85×(174+26)
4、85×174+85×26
5、(80+8)×25
6、80×25+8×25
7、32×(200+3)
8、32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的.同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从下面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
教学例7
(1)教师出示例题:计算9×37+9×63。
教师:这道题是要计算两上乘积的和。
“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系下面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从下面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“下面计算中的第二步根据是什么?”(乘法分配律)。
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
三、课堂练习
做练习十四的题目。
1、第3题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”
2、第4题,先让学生自己计算。核对时让学生回答。
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
3、第7题,先让学生独立做,然后集体核对,核对的要让学生说一说是怎样做的。当核对“26×3”时,学生说出计算方法后,再让学生说一说计算过程。
学生发言后,教师说明:26乘以3可以写作(20+6)×3,根据乘法分配律等于20乘以3的积再加6乘以3的积,这实际上是应用了乘法分配律。这就是说,我们过去学过的乘法口算有些应用了乘法分配律。
这道题中的第7小题应用乘法结合律比较简便,第4、6、8、9题应用乘法分配律比较简便。
4、第9题和第10题,先让学生独立做,核对时要让学生说出每个算式的意义。
5、提前做完的学生可以做第9题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:
(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作业
练习十四的第5、6、8题。
《乘法分配律》教案10
教学内容:
苏教版小学数学第七册P58
教学目标:
1、在学生初步掌握乘法分配律的基础上,能应用乘法分配律进行简便计算。
2、通过计算与比较,发现乘法分配律可以类推到两个数的差与另一个数相乘。
教学重点、难点:发现乘法分配律可以类推到两个数的差与另一个数相乘。
教学准备:
教学情境挂图
设计理念:
通过实际题目来理解乘法分配律的意义,在计算、观察以及和乘法对加法的分配律的.比较中,内化乘法对减法的分配律。
教学步骤
教师活动
学生活动
一、揭示课题
1、明确要求:这节课我们用乘法分配律的知识来解答一些题目。
2、板书课题。
回忆。
二、复习乘法对加法的分配律
1、练习五第1题。
⑴引导学生观察看图。
⑵思考:怎样计算小正方体的个数?
⑶指名汇报,并说说这样计算的依据。
⑷根据学生的汇报板书。
2、练习五第2题。
出示16401
(30+2)15
引导学生重点说说算法。
出示10323
125(8+16)
重点引导学生用不同的方法算。
看图,弄清图意。
思考。
列出两种算式进行计算。
汇报,说出计算的依据,明确乘法分配律的实质。
练习。
指名板演。
集体订正。
练习。
指名板演。
集体订正。
三、学习乘法对减法的分配律
1、练习五第3题。
⑴出示第3题。
⑵你发现了什么?能用自己的话表达出来吗?
⑶与刚才我们做的题目有什么不同?
2、练习五第4题。
出示:12(40-5)
3598
引导学生重点说说第2题的计算方法。
3、练习五第5题。
⑴指名读题。
⑵解答第一个问题。
⑶解答第二个问题。
⑷小结:这一题是乘法分配律在实际生活中的应用。
分组计算一组题目。
指名板演。
观察,交流发现的规律。
与乘法对加法的分配律进行比较。
计算。
指名板演。
集体订正。
读题。理解题意。
练习。反馈
练习,列出不同的算式。比较。
四、小结作业
提问:
通过这节课的学习,你有什么收获?你的表现怎样呢?
指名回答,自我评价。
作业设计:课堂作业:练习五第2、4题中剩下的两题。
教学反思:
《乘法分配律》教案11
教学目标:
知识目标:
(1)巩固乘法分配律
(2)理解在具体情况下,运用乘法分配律达到简便计算的算理
技能目标:学会运用乘法分配律进行简便计算。
情感目标:培养学生认真观察的良好习惯。
教学重点:利用乘法分配律达到简便计算
教学难点:乘法分配律在具体题目中的应用。
教学关键:让学生理解乘法分配律
教学过程:
一.复习准备
1.提问:什么叫乘法分配律,公式是怎样的?
2.应用乘法分配律填空:(多媒体)
(8+10)×125=
17×42+17×58=
从上面题目的'计算过程中你发现了什么?(可以得到简便计算)
三.新课教学
1.揭示课题
师:今天我们就是学习怎样用乘法分配律进行简便计算。
2.教学例6
(1)出示例66×29+6×71
指名生列式计算。6×29+6×71
=6×(29+71)
=600
说一说:简便在哪里?你是怎样想到的?(题目要有怎样的特征才可以这样做?)
(2)试一试1:
用简便方法计算:
5×116+5×84125×(8+40)38×99+38
重点讲评:38×99+38
把它看作99个38加上1个38,所以是=38×(99+1)
试一试2:75×99+7549×80+49
3.教学例7
(1)出示例7101×26
独立思考:怎样简便计算?你是怎样想的?
指名一生回答:我把101看作100+1,所以是
101×26
=(100+1)×26
=100×26+1×26
=2626
(2)试一试3:(P99第1题第2小题的前4题)用简便方法计算:
46×10138×10214×9925×98
说一说这些题目有什么特征?想一想:后两题怎样做?
独立计算,指名生回答,重点讲解后两题。
三.巩固与提高:
8×23+8×2725×36+14×25
99×20+20101×32-32
104×2594×25
准备题:应用乘法分配律填空:
(8+10)×12517×42+17×58
试一试1:用简便方法计算:
5×116+5×84125×(8+40)38×99+38
试一试2:75×99+7549×80+49
试一试3:(P99第1题第2小题的前4题)用简便方法计算:
46×10138×10214×9925×98
三.巩固与提高:
8×23+8×2725×36+14×25
99×20+20101×32-32
104×2594×25
《乘法分配律》教案12
教学内容:教科书第64页例7,练习十四的第3一10题。
教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。
教学难点:应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。
教学过程:
一、复习
教师出示试题:
1.(35+65)×37 2.35×37+65×37
3.85×(174+26) 4.85×174+85×26
5.(80+8)×25 6.80×25+8×25
7. 32×(200+3) 8.32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例7
(1)教师出示例题:计算9×37+9×63。
教师:这道题是要计算两上乘积的和。
“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律)。
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的.和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
三、课堂练习
做练习十四的题目。
1.第3题,2.让学生口算。当计算101×57和45×102时,3.提问:“你是怎样做的?得多少?”
2、第4题,5.先让学生自己计算。核对时让学生回答。
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
3、第7题,7.先让学生独立做,8.然后集体核对,9.核对的要让学生说一说是怎样做的。当核对“26×3”时,10.学生说出计算方法后,11.再让学生说一说计算过程。学生发言后,12.教师说明:26乘以3可以写作(20+6)×3,13.根据乘法分配律等于20乘以3的积再加6乘以3的积,14.这实际上是应用了乘法分配律。这就是说,15.我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16.第4、6、8、9题应用乘法分配律比较简便。
4、 第9题和第10题,18.先让学生独立做,19.核对时要让学生说出每个算式的意义。
5.提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作业
练习十四的第5、6、8题。
《乘法分配律》教案13
教学目标
1.创设充分尝试练习、比较讨论等探究情境,使学生进一步掌握乘法分配律的运算律,能灵活地应用乘法分配律进行简便计算,并能把该运算律迁移到减法中去,还能解决一些简单的实际问题。
2.在系列的对比练习、讨论交流、辨析总结中,培养学生的迁移推理能力,提高他们思维的灵活性。
3.创设生动的、生活化的`情境,使学生感受该知识的生活价值。
重点难点
发现乘法分配律可以类推到两个数的差与另一个数相乘。
教学准备
教学情境挂图等。
教学过程
教学环节
过程目标
教师活动
学生活动
教学反思
唤起注意,引起旧知,为本课复习作好充分准备。
通过实际题目来理解乘法分配律的意义。
一、引导回忆:
师:前面我们学过乘法中的另一个运算律,是什么呀?
师:用字母怎么表示呀?
二、进行练习:
(一)基本练习:
1.书本练习五第1题。
(1)引导学生观察看图,思考怎样计算小正方体的个数?
(2)组织反馈:根据学生的
引起所学的乘法分配律公式的回忆。
学生看图,弄清图意,思考题目,列出两种算式进行计算。指名回答问题。
教学环节
过程目标
通过计算、观察以及和乘法对加法的分配律的比较,将新知内化。培养学生的迁移推理能力,提高他们思维的灵活性。
创设生动的、生活化的情境,使学生感受该知识的生活价值。
汇报板书。
2.书本练习五第2题。
先选择:出示16×401
(30+2)×15
引导学生重点说说算法。
出示103×23125×(8+16)
(二)变式练习:
1.书本练习五第3题。
(1)组织学生尝试练习。
(2)组织校对。
(3)引导发现:你发现了什么?提问:与刚才我们做的题目有什么不同?
2.练习五第4题。
引导学生重点说说第2题的计算方法。
(三)解决实际问题:
书本练习五第5题。
(1)引导独立审题。(2)组织独立解答。(3)组织校对。
三、小结与作业:
1.组织交流本课收获。
2.布置作业:补充练习相应习题。
学生集体练习,指名个别学生板演。
集体计算,指名板演。
观察,交流发现的规律。
与乘法对加法的分配律进行比较。
集体计算,指名板演。
读题。理解题意。
学生练习。反馈
学生练习,列出不同的算式。比较。
独立解答,个别校对交流。
各自交流。
独立作业。
通过本课的练习学生的计算能力得到了提高,但是运算律的熟练运用还不够,今后还要多练习。
《乘法分配律》教案14
教学目标:
1、借助画图的方式理解、掌握乘法分配律并会用字母表示。
2、能够运用乘法分配律进行简便运算。
3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。
教学重、难点:
理解并掌握乘法分配律。难点是乘法分配律的推理及运用。
教学过程:
一、情境导入:
出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?
二、探究发现,归纳总结。
(一)借助图形,感知模型。
1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?
请把想象的图画出来。交流学生作品后,出示
60米 30米
20米 《乘法分配律》教学设计
原面积 增加的部分
2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?
评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。
(二)借助图形,抽象模型。
1、出示几何图形:用两种方法解决问题。
60米 ( )米
20米 《乘法分配律》教学设计
原面积 增加的部分
刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?
2、交流:你想增加几米?怎样算?结论是什么?
师相机板书。
引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。
3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的.猜测进行计算、验证、自主完成任务单项2。
( )米 ( )米
( )米《乘法分配律》教学设计
原面积 增加的部分
4、交流:你是怎么猜测和验证的?结论是什么?
教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c
讨论:这个规律在数学上叫——?(板书课题——乘法分配律)
(三)借助图形,逆用模型。
1、出示计算题:
(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。
引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?
2、46×25+54×25、98×20+98×80
请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。
(四)借助图形,拓展模型。
1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?
你们能解决这个问题吗?试着算一算。
反馈交流:说说你们是怎么解决的?
我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。
2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?
谁能用字母来表示这个新规律呢?
师板书:(a-b)×c=a×c-b×c
三、科学练习:
《乘法分配律》教案15
教学目标:
略
知识与技能:
1、让学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2、使学生会用字母表示乘法分配律。
3、能用乘法分配律进行简便计算。
过程与方法:
1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2、学生在发现规律的过程中,发展比较、分析、抽象、概括的能力,增强用符号表达数学的意识,进一步体会数学与生活的联系。
情感态度与价值观:
1、感受数学知识之间的内在联系,培养学生发现、探究的意识。
2、让学生感受数学规律的'确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
重点:
理解乘法分配律的意义,并归纳出定律,会运用乘法分配律。
难点:
抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。
教学过程:
一、谈话导入,揭示课题。
师:昨天,同学们通过微视频自学了什么内容?(乘法分配律)
这节课我们就进一步深入的学习乘法分配律。
二、交流自主学习任务单
师:通过观看《乘法分配律》的微视频,你知道了什么?
(乘法分配律的意义,如何理解乘法分配律)
(一)小组交流:任务一
1、任务一:乘法分配律的意义
从“举例”、“意义”和“用字母表示”这3点展开交流。
2、学生汇报:
师:谁有不同的举例?像这样的例子可以举多少个?(无数个)
通过举例,你有什么发现?
(揭示乘法分配律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律)
用字母表示:(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
师:“分别相乘”你是怎样理解的?请结合字母表示说一说。
(二)小组交流:任务二
1、任务二:理解乘法分配律
从“画图”、“乘法的意义”这2点展开交流。
2、学生汇报:(画图理解)
师:谁有不同的画法?(课件演示)
仔细看图和等式,谁看懂了?说给大家听。
1、求这个长方形的周长。
4×2+6×2=(4+6)×2
长方形的'周长=(长+宽)×2
师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今天学习的乘法分配律。
2、组合图形大长方形的面积:
4×2+6×2=(4+6)×2
师:计算组合图形的面积中也有乘法分配律,利用数形结合的方法来理解乘法分配律,很好。
3、结合乘法分配律来理解多位数乘法的笔算。
25实际上是把12分成25×12×12()+()进行计算=25×(+)
师:同学们能联系旧知识学习新知识,真棒!只要你做一个有心人,你就会发现其实数学中有些新、旧知识是有联系的。
4、乘法的意义理解乘法分配律。
4×2+6×2
表示:()个2()个2
一共()个2
所以:4×2+6×2=(+)×2
三、巩固练习。
1、下面哪些算式是正确的?正确的画“√”,错误的画“×”,并说说判断理由。
56×(19+28)=56×19+28()
32×(7×3)=32×7+32×3()
64×64+36×64=(64+36)×64()
2、脱式计算:(两种方法计算)
(8+4)×25(8+4)×25
师:你喜欢哪种计算方法,为什么?
3、用简便方法计算下面各题。
125×48 34×72+34×28
99×38+38 73×30—3×30
4、解决生活中的实际问题。
这套运动服上衣65元,裤子35元。李阿姨购进了42套这种运动服,花了多少钱?(列综合算式解答)
四、总结
通过今天的学习你有什么收获?
【《乘法分配律》教案】相关文章:
乘法分配律教案09-18
《乘法分配律》教案08-01
乘法分配律教案11-28
《乘法分配律》教案10-28
小学乘法分配律教案09-09
乘法分配律说课稿10-01
乘法分配律说课稿07-17
乘法分配律教学反思05-15
乘法分配律教学反思10-22
乘法分配律教学反思05-30