倒数的认识教案

时间:2025-10-25 12:30:58 教案 我要投稿
  • 相关推荐

倒数的认识教案

  在教学工作者实际的教学活动中,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。写教案需要注意哪些格式呢?以下是小编为大家收集的倒数的认识教案,仅供参考,大家一起来看看吧。

倒数的认识教案

倒数的认识教案1

  教学目标:

  1.使学生理解倒数的意义。

  2.使学生掌握求一个数的倒数的方法。

  3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的概念

  教学难点:会灵活求真、假分数、小数、整数、带分数的倒数。

  教学策略:

  1、因为学生已经有了前面分数乘法计算的基础,所以本节课教师可以完全放手让学生通过自学和足够的练习掌握倒数的概念以及求一个数的倒数的方法。

  2、教师应让学生明确倒数的两个条件:①两个数。②这两个数的乘积是1。乘积是1的两个数叫做互为倒数。并让学生讨论:

  ①怎样的两个数互为倒数?

  ②一个数能叫做倒数吗?

  ③5是倒数这样的说法对吗?为什么?

  3、在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。这个数可以是小数,分数和整数。

  然后让学生自己创作几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。

  4、教学求一个数的倒数的方法时要引导学生观察:互为倒数的两个数的分子、分母是互相调换位置的。并思考:

  ①所有的自然数都有倒数吗?1的倒数是几?

  ②0有没有倒数?为什么?

  ③怎样求一个数的`倒数?

  引导学生得出:

  1的倒数是1,0没有倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  5、使学生明确:

  (1)自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。

  (2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。

  (3)求小数可以先把它化为分数再调换分子、分母的方法来求倒数。

倒数的认识教案2

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的.数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

倒数的认识教案3

  第二单元 分数乘法

  第7课时 倒数的认识

  教学内容:

  课本第36页例7和“练一练”,练习六第16-21题。

  教学目标:

  1、认识倒数的概念,掌握求倒数的方法,能熟练地求一个数的倒数。

  2、培养数学思考的能力。

  教学重点:

  掌握求倒数的方法。

  教学难点:

  能熟练地求一个数的倒数。

  课前准备:

  多媒体课件

  教学过程:

  一、导入新课

  问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

  二、教授新知

  1、教学例题。

  (1)出示例7。

  下面的几个分数中,那两个数的乘积是1?

  3/8 5/4 3/5 7/10 4/5 2/3 10/7 8/3

  (2)学生回答。

  (3)引出概念。

  乘积是1的两个数互为倒数。例如3/8 和8/3互为倒数。可以说3/8 是8/3的倒数,8/3是3/8的倒数。

  (4)学生举例来说。进行及时的评议。

  (5)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”

  2、归纳方法。

  小组讨论:

  观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

  全班交流。

  求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  问:5的倒数是几?1的倒数是几?

  学生回答,并说原因。

  追问:0有倒数吗?为什么?

  指出:因为0和任何数相乘的'积都不会是1,所以0没有倒数。

  除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  3、完成“练一练”。

  学生回答。

  指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。

  三、巩固练习

  1、做练习六第16题。

  学生填书上后,集体订正。

  2、做练习六第17题。

  指名口头回答。

  3、做练习六第18题。

  学生填书上后,集体订正。

  4、做练习六第19题。

  重点引导学生讨论每一组数的规律。

  四、课堂总结

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  五、布置作业

  练习六第20、21题和思考题。

  教学反思:

倒数的认识教案4

  学习目标:

  1、知道倒数的意义。

  2、经历倒数的意义这一概念的形成过程。

  3、会求一个数的倒数。教学重点:倒数的意义与求法

  数学难点:理解“互为”的意义,明确倒数只表示两个数间的关系,而不能单独地说某个数是倒数。

  教学方法:自学法、讨论法、谈话法、练习法。

  教学过程:

  一、问题导入

  师:当你们看到“倒数的认识”这一课题时你们想知道有关倒数的哪些知识呢?(出示幻灯片)

  生:

  1、什么是倒数?

  2、怎样求倒数?

  师:带着这些问题进入我们的学习探究。

  (设计意图)问题是数学的心脏,是学生探究的起点和动力,引导学生发现问题、提出问题。

  二、合作探究、展示交流

  1、探究倒数的意义

  让学生解答课本的例1的算式,然后让学生找这些算式有什么特点,当学生找出乘法算式等于1的时候,根据结果是1的特点引出倒数的意义。

  师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(屏幕显示)生齐读

  师:你认为在倒数的意义这句话中哪些词是最关键的

  生:乘积原因:不是加、减,也不是商

  生:1原因:不是0、2

  生:互为原因:相互依存举例:我们两个互为同桌。

  师:再观察例1:说出3/8、8/3的倒数关系。

  生:3/8、与8/3互为倒数。

  师:还可以怎么说?3/8的倒数是8/3,8/3的倒数是3/8。

  师:还可以怎么说

  生:3/8是8/3的倒数,8/3是3/8的倒数。

  让学生说其他三组。

  练习巩固:判断(出示幻灯片)

  1、因为3/4+1/4=1,所以3/4是1/4的'倒数。()

  2、因为1/2×4/3×3/2=1,所以1/2 4/3 3/2互为倒数。()

  3、3/8×8/3=1,所以3/8是倒数,8/3是倒数。()

  (设计意图)学生对于“互为”两个字的理解比较难,是教学中的一个难点。在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为同桌”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。

  2、探究求倒数的方法。

  让学生观察图形的位置和汉字上下的位置变化,再观察例1,从而找到规律。(学生演示)(出示幻灯片)

  生:分数的分子和分母的位置颠倒了

  师生共同分析例1四组数

  师:5和1/5老师怎么没看出分子和分母的位置交换

  生:5可以看做分母是1的分数

  学生完成课本的例2

  完成例2后总结方法(出示幻灯片)

  生:看两个分数的乘积是不是1

  生:看分数的分子和分母的位置是否颠倒

  (设计意图):通过对第一组数的再次观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  师:在例2中哪些数还没找到倒数

  生:1 0

  师:1和0有没有倒数呢?如果有,是多少?

  生:1有倒数,因为1×1=1

  生:还可以把1看作分母是1的分数,分子、分母的位置交换后还是1

  教师板书:1的倒数是1

  教师引导质疑:0有没有倒数?为什么?

  生:0乘任何数都得0,不是1所以0没有倒数

  生:可以把0看成0/1,分子和分母的位置交换后成了1/0,0做分母无意义,所以0没有倒数教师板书:0没有倒数1。

  (设计意图):帮助学生巩固知识,轻松、顺利地解决求“1”和“0”这个特殊数的倒数。既分散了教学难点,又让学生享受到了思维的快乐。

  师:0.7的倒数是多少?

  同桌讨论:把小数化为分数

  师:2又3/4的倒数又是多少呢?分组讨论

  小组展示:把带分数化为假分数

  小结:如果是求一个带分数的倒数要先化成假分数;如果是求一个小数的倒数要先化成分数(教师补充:是一个最简分数);如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

  (设计意图)有目的的帮助学生把不同的数组进行了合理的分类,这样就为学生有条理的求不同数的倒数做好了铺垫。充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  三、巩固练习

  游戏:规则:同桌两人完成,一名学生说出一个数,另一名同学说出它的倒数,看谁说的又快又准。(出示幻灯片)

  师:同学们都说的非常好,会不会写呢?请写出7/8的倒数两名学生板演

  生:7/8=8/7

  生:7/8的倒数是8/7学生改错,教师强调:不能用等号连接

  完成课本24页做一做

  (设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  四、总结

  说说这节课学习了什么?学会了什么?有什么收获?

  (设计意图):通过回顾,帮助学生梳理本课所学知识,进一步理解并体会教学重点--倒数和要求倒数的方法。

  五、达标(出示幻灯片)

  判断:

  (1)求2/5的倒数:2/5=5/2 ( )

  (2)得数是1的两个数叫做互为倒数( )

  (3)9的倒数是9/1 ( )

  (4)一个数的倒数一定比这个数小( )

  填空

  (1)3/8的倒数是()

  (2)7的倒数是()

  (3)1/9的倒数是()

  (4)的倒数是()

  (5)0.3的倒数是()

  (6)2.25的倒数是()

  (设计意图):通过达标题检测学生本节课掌握的情况,有利于下一节课的学习。

  拓展7×()=15/2×()=()×3又2/3=0.17×()=1

  (设计意图):新课程提出,通过学习,使不同的学生在数学上得到不同的发展,让学生跳一跳,能摘到果子。

  教学反思:

  本节课一开始通过问题引入新课,通过师生分析帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

  本节课我采用了问题式教学法。教师通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生仔细观察细心体会分子与分母的位置关系,从而发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现”。

  “倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学生,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在同桌交流、小组交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识。并且充分调动学生的学习积极性,给学生提供充足的数学活动的机会,引导学生进行小组合作学习,在讨论中探究知识,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  在课后的巩固练习中,我设计了“我能行”、“填空”、“游戏”等题型,通过这些多层次的练习,帮助学生巩固新知,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  最后在课堂总结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

倒数的认识教案5

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及“互为”的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  一、创设情境,提出问题。

  师:我们知道语言文字中有些字是可以倒过来写的。

  比如:吴—吞

  学生举例:杏—呆。

  师:数学中有没有这种情况呢?

  你能把4/7倒过来写吗?

  板书:4/7--(7/4)8/3--(3/8)2--(1/2)

  师:你能根据分子、分母的位置关系给这几组数取个名字吗?

  生:倒数。

  出示课题:倒数的认识。

  二、教学倒数的意义.

  (1)5/8×1/8 7/15×5/7 6×1/2 1/40×5

  (2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2

  教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,

  第二组每个算式中两个数相乘的积都是1.)

  教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”

  教师举例说明什么叫做“互为倒数”.

  3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

  教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一

  个数的倒数,不能孤立地说某一个数是倒数.”

  让学生试着说一说第二组其它3个算式中两个数的关系.说的`时候,注意让

  学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.

  教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,

  并让学生根据倒数的意义来检验是不是正确.

  三、教学例题(求倒数的方法).

  教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律

  进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

  出示例题.“怎样找出的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把的分子、分母调换位置就是的倒数.教师板书:

  分子、分母调换位置

  ─────────→

  的倒数就可以让学生自己写.

  教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可

  以看成分母是1的分数.)

  “那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)

  教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以

  这个自然数作分母以1作分子的分数.)

  接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)

  “0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)

  教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师

  注意提醒学生把排除在外.

  四、课堂练习。

  写出下面各数的倒数:

  4/13 9 1/7 25

  反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

倒数的认识教案6

  本课题教时数:

  1本教时为第1教时备课日期9月17日

  教学目标:

  认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

  教学重难点:

  掌握求倒数的方法,能熟练得求一个数的倒数。

  教学准备:

  教学过程设计

  教学内容

  师生活动

  备注

  一、 教学倒数的意义

  二、教学求倒数的方法

  三、巩固练习

  四、课堂小结

  五、作业

  1、计算

  ×=

  ×=

  3×=

  问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

  追问:怎样的两个数互为倒数?为什么要说”互为?倒数?

  又问:谁能根据刚才的算式说一说,哪个数是哪个数的倒数?

  1、教学例题

  出示例题

  问:的倒数是哪个数?你则那样能够想到的?(板书格式)

  2、归纳方法

  观察倒数和原数的关系,想一想一个数的`倒数与原数相比,分子、分母的位置发生了什么变化?

  问:你认为怎样就能很快的求出一个数的倒数?

  追问:0有倒数吗?为什么0没有倒数?

  指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

  除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  3、教学“试一试”

  指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。

  1、做练一练

  2、做练习六第2题

  3、做练习六第3题

  4、做练习六第4题

  5、做练习六第5题

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  练习六6、7题

  说明:算式中两个数的积都是1,像这样乘积是1的两个数互为倒数。

  课后感受

  尝试学生自学自练的效果较好,学生的积极性也高。

倒数的认识教案7

  教学内容:课本第19页的例题,完成”做一做“题目和练习五的第1~6题。

  教学目的:

  1.使学生理解倒数的意义。

  2.使学生掌握求一个数的倒数的方法。

  3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义

  教学难点:正确找到一个数的倒数

  教学过程:

一、复习。

  1.把带分数化成假分数。

  2.把小数化成分数。

  0.71.50.3750.75

二、新授。

  1.引入。

  这节课我们要学习一个新知识--倒数。

  (板书课题:倒数的认识)

  2.倒数的意义。

  (1)口算下面各题。

  问:上面四个算式都是几个数相乘?

  计算的结果有什么特点?

  教师说明:具备以上特点的两个数叫做互为倒数,所以我们就说,上面每个算式中的两个数互为倒数。

  引导学生总结出倒数的定义。教师板书:

  乘积是1的两个数叫做互为倒数。

  (2)教师指出倒数的两个条件:

  ①两个数。

  ②这两个数的乘积是1。

  例如:和互为倒数,就是的倒数,的倒数是。

  (3)讨论:

  ①怎样的两个数互为倒数?

  ②一个数能叫做倒数吗?

  ③5是倒数这样的说法对吗?为什么?

  在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  (4)判断下列各组数是否互为倒数。

  (5)让学生举出几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。

  3.求一个数的倒数的方法。

  (1)引导学生观察板书出的互为倒数的两个数。

  问:互为倒数的两个数有什么特点?

  (2)引导学生找出:互为倒数的两个数的分子、分母是互相调换位置的。

  (3)讨论:

  ①2的倒数是多少?

  ②所有的自然数都有倒数吗?1的倒数是几?

  ③0有没有倒数?为什么?

  ④怎样求一个数的倒数?

  引导学生得出:

  1的倒数是1。0没有倒数。

  求一个数(0除外)的.倒数,只要把这个数的分子、分母调换位置。

  (4)教学例题。

  写出和的倒数。

  第一小题:让学生讨论怎样写,教师板书:

  第二小题:让学生独立完成。

  让学生再说一说求倒数的方法。

 三、巩固练习。

  1.完成课本第23页的”做一做“题目。

  使学生明确:

  (1)求自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。

  (2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。

  2.完成练习五第1、2题

  四.全课小结。

  请学生说一说这节课学习了哪些内容。

  五.作业

  练习五第3~6题。

  教学反馈:

倒数的认识教案8

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:

  知道倒数的意义,会求一个数的倒数

  教学难点:

  1、0的倒数的求法。

  教具准备:

  多媒体课件

  教学过程:

  一、开门见山,揭示课题

  1、出示课题:倒数的认识

  老师:今天我们一起来学习第三单元分数除法的第1课时:倒数的认识

  2、理解字的意思

  老师:上课之前老师想请同学帮我解决个问题:“倒”这个字怎么读的?

  学生:倒dǎo,dào

  师:这两种读音表示的意思一样吗?学生用茶杯演示。

  3、老师:你觉得在这里这个“倒”字怎么读?你见过这样的数吗?

  学生举例说说。

  看到这个课题,在你的头脑中会产生什么问题?

  (设计意图:学生通过自己对字的理解,初步感知什么是倒数)

  二、探索新知,突破重点

  (一)、倒数的意义

  1、初步探究

  师:请看这两组算式,我们分组完成,比比哪组同学速度快。

  学生计算,交流

  老师:做第1组算式的同学完成的快

  这时学生可能会说:不公平,第1组的题目简单,得数都是1、

  老师:为什么第1

  组的算式简单,有什么特点?

  生:每组数中两个分数的分子、分母的位置颠倒过来了。

  生:都是乘法。

  生:得数都是1、

  老师:这样的两个数互为倒数,你们能用一句话说说什么是倒数吗?

  学生试着概括

  师概括并板书:乘积是1的两个数互为倒数。

  师:找一找关键词,说说你对这句话的理解。

  生1:乘积是1、是乘法,而且积是1

  生2:两个数,只能是两个数,三个,四个数的乘积是1也不能说它们互为倒数。

  生3:互为倒数。

  老师:“互为倒数”是什么意思呢,谁愿意说说

  老师:这学期我们班来了几位新同学,经过几周的相处,你们之间互相成为朋友了吗?谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?

  生:我是他的朋友,他也是我的朋友。

  师:那我们举个例子说说。比如3/8和8/3的乘积是1

  ,我们就说因为3/8和8/3互为倒数。所以3/8的倒数是8/3;也可以说8/3的倒数是3/8。(示范说)

  师:同桌两个人举出倒数的例子,并仿照刚才老师说的用上“因为”

  “所以”。

  (设计意图:学生在计算练习中体会互为倒数的两个数的乘积是1,同时也体会到互为倒数的两个数的练习与区别,为求一个数的'倒数做准备。)

  2、深入剖析

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  师:和的积是1,我们就说(生齐说)

  师:5和的乘积是1,这两个数的关系可以怎么说?

  (小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  (二)、倒数的求法

  1、求分数的倒数

  师:(出示课件例1)下面哪两个数互为倒数?请同位的同学之间在一起交流一下,把它们找出来。(学生合作交流,认真寻找。)

  老师:你是怎样找出来的?

  学生回答,老师问:五分之三的倒数和五分之三相等吗?

  学生:不相等

  板书:

  2、求整数的倒数

  师:整数6的倒数怎么求?

  生:把6看成是分母是1的分数,再把分子分母调换位置。

  板书:

  3、交流一下1和0这两个特殊的数。

  师:那1

  的倒数是几呢?(学生很快就说出来了,并说明了理由)

  师:0的倒数呢?生:没有。

  师:为什么?

  学生讨论交流

  生1:因为0和任何数相乘都得0,不可能得1。

  生2:分子是0的分数,实际上就等于0,0可以看成是0/2、0/3……把这些分数的分子分母调换位置后分母就为0了,而分母不可以为0。

  师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1

  的倒数是1,0没有倒数。

  生齐读求一个数倒数的方法。

  (设计意图:学生在讨论交流中探索1、0的倒数,能很好的理解)

  三、巩固练习

  1、写出下面各数的倒数。

  2、写出下面各数的倒数。

  ①0、8的倒数是()。

  ②的倒数是()。

  3、争当小法官,明察秋毫。

  (1)1的倒数是1。

  (2)A的倒数是1/A。

  (3)因为0、5×2=1,所以2是倒数。

  (4)真分数的倒数都大于1,假分数的倒数都小于1。

  (5)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。

  四、总结反思、评价体验

  这节课你们有什么收获?还有什么疑问?

  (设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  五、课堂小结

  师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!

倒数的认识教案9

  [教学内容]:倒数的认识

  [教材简析]

  学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。

  [学情简析]

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。

  [教学目标]

  1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的意义。

  2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。

  3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。

  [教学重点]

  倒数的意义与求法。

  [教学难点]理解“互为”的`意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。

  [教学过程]

  一、复习旧知,作好铺垫

  1、创设情景激趣

  师:请同学们仔细观察,(课件演示风景图片)

  师问:你发现图画上的景物有什么特点?

  生:这些图画都倒过来了,出现了倒影。

  师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)

  师:你们发现汉字的特点了吗?

  生:这些汉字上下交换位置以后,都成了新的汉字。

  师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?

  板书:倒数

  [设计意图:学生已经学过分数的乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]

  二、合作探究,揭示倒数的意义。

  1.学生交流自己写的乘积是1的两个数

  (估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:

  师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)

  [设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]

  三、观察比较,探讨求倒数的方法。

  探讨研究黑板上板书的几组数。

倒数的认识教案10

  一、 教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、 教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、 教学目标:

  1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、 教学重点

  理解倒数的意义,掌握求倒数的方法。

  五、 教学难点

  熟练写出一个数的倒数。

  六、 教学过程:

  (一)、 谈话

  1.交流

  师: 我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数

  师:4是3的4/3,

  生:3是4的 3/4

  师:7是15的7/15; 生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:

  (1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习

  (1)出示卡片 (六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0.4

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2.你是怎么找出7/4的倒数的?

  提问: 我们怎样才能很快地找到一个数的倒数?为什么?

  4.练习 请剩下的没有找到朋友的同学继续找倒数

  5.讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的`分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6.完善求一个数的倒数的方法

  三、 巩固练习

  (一)填空

  1.因为5/3*3/5=1,所以()和()互为();

  2.因为15*1/15=1,所以()和()互为 ();

  3.4/7与()互为倒数;

  4.()的倒数是6/11

  5.()的倒数是2

  6.1/8的倒数是()

  7.1/2/7的倒数是()

  8.0.3的倒数是()

  (二)判断

  1.得数是1的两个数互为 倒数。()

  2.互为倒数的两个数乘积一定是1。()

  3. 1的倒数是1,所以0的倒数是0 。()

  4.分数的倒数都大于1。()

  (四)思考

  4/5*()=()*8

  四、总结

  今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  五、 布置作业

  简评:

   一、自主学习中让学生勇于创新

  新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

  二、在游戏活动中实现新知的推进

  游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

倒数的认识教案11

  教学内容 教科书第28~29页例1、“做一做”及相关内容。

  教学目标

  1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

  2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

  教学重点 理解倒数的意义;求一个数的倒数。

  教学难点 理解“互为倒数”的含义。

  教学准备 教学课件、写算式的卡片。

  教学过程 具体内容 修订

  基本训练,强化巩固。

  (3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

  2.学生独立完成上面几组题,小组内检查并订正。

  创设情境,激趣导入。

  (2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的`约分。

  提示目标,明确重点。

  (1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

  学生自学,教师巡视。

  (6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?

  2.通过观察发现算式的特点。

  展示成果,体验成功。

  (4分钟) 让学生说说乘积为1的算式有什么特点。

  学生讨论,教师点拨。

  (8分钟) 1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

  2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

  3.引导学生思考:互为倒数的两个数有什么特点?

  4.探讨求倒数方法。

  (1)出示例题,让学生说说哪两个数互为倒数。

  (2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

倒数的认识教案12

  教学内容:p27倒数的认识,练习六全部习题。

  教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标研究倒数的意义、方法和用处。

  二、新知探索:

  1、研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2、学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a、以真分数为例;

  如:5/8的倒数是8/5真分数的倒数是假分数。)

  (b、以假分数为例;

  8/5的倒数是5/8假分数的倒数是真分数。)

  (c、以带分数为例;

  带分数的倒数是真分数。)

  (d、以小数为例;

  分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以整数为例;

  整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的'方法也融入其中。

  3、讨论0、1的情况:

  1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  1、完成练一练。

  学生独立完成后,集体订正。重点问:8的倒数是几?

  2、练习六5(判断)

  3、补充判断:

  a、a是自然数,a的倒数是1/a。

倒数的认识教案13

  教学目标

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重难点

  教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的.方法。

  教学难点:掌握求倒数的方法

  教学过程

  一、导入

  课件出示:

  1、找规律:指生回答。

  2、找规律,填空,指生回答。

  3、口算,开火车口算。

  4、你能找出乘积是1的两个数吗?指生说。

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:什么是倒数?生生说,举例说明。

  乘积是1的两个数互为倒数。举例说明。课件出示。

  观察每一对数字,你发现了什么?

  像这样乘积是1的数字有多少对呢?

  (3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (4)互为倒数的两个数有什么特点?

  像这样的每组数都有什么特点呢?

  两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)

  2、教学求倒数的方法。试着写出3/5 、7/2的倒数。

  (1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  想:写出6的倒数。独立完成。

  先把整数看成分母是1的分数,再交换分子和分母的位置。 6

  = 6/1 1/6

  求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  3、教学特例,

  深入理解

  (1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  4、课件出示,巩固练习:这些数怎样求倒数呢?

  (1)学生独立解答,教师巡视。

  (2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

  三、巩固应用

  课件出示:

  1、练习六第2题:填一填。

  2、找朋友。

  3、写出上面各数的倒数

  4、辨析练习:练习六第3题“判断题”。

  5、我的发现。

  6、马小虎日记,开放性训练。

  7、谜语:

  五四三二一

  (打一数学名词)

  四、总结

  你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

倒数的认识教案14

  教学内容:

  教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课 型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  板书:

  3

  8× 8

  3= 1 7

  15×15

  7=15×= 151112 ×12= 1

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1 生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4×4/5 7/10×10/73×1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘. 〈 板书 〉:两个数

  1、 你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:①模仿说 ②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说??(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同

  (5)辨析:下面的说法对吗?为什么?

  A:2/3 是倒数。( )

  B:得数为1的两个数互为倒数。( )

  C、

  D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二) 探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗? 试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的`倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5 的倒数是( ) 7/2 的倒数是( )

  5 的倒数是( ) 13 的倒数是( )

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1 的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。 ( )

  ②任何假分数的倒数是真分数。 ( )

  ③因为3×1/3=1,所以3是倒数。 ( )

  ④1的倒数是1。 ( )

  2、思考题:

  3/8×( )=( )×=( )×6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,

  若是整数,先划成分母是1的分数。

  1的倒数还是1,0没有的倒数。

倒数的认识教案15

  教学内容:

  人教版六年级上册教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数的意义。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、观察、比较、交流、归纳等活动,理解倒数的意义,让学生经历体验知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作交流培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:理解倒数的含义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法。

  教法:创设情境、启发引导、自学与讲授相结合等。

  学法:联系生活实际、观察、比较、交流、归纳。

  教学准备:多媒体课件

  教学过程:

  一、创设情境,激趣导入。

  1、理解“互为”的含义。

  教师:同学们,听到“朋友”这个词我们心里暖洋洋的,谁能告诉大家你最好的朋友是谁吗?你能用一句话来表达你们之间的关系吗?如:×××是我的朋友,我是×××的朋友,×××和我互为朋友。(另外找一名同学提问)你能再描述一下他们两人的关系吗?(回答略)那我们能说×××是朋友吗?不能,因为朋友是相互的,互相是朋友,他们的关系是相互依存的。那么在我们以前的数学学习中有没有遇到像这种关系相互依存的两个数呢?请举例。(因数与倍数、互质数等)

  2、理解“倒”。

  教师:同学们,刚才我提问时,有的同学吞吞吐吐的,谁知道“吞”字上下颠倒过来是什么字呢?现在我们来做一个填字游戏,看谁是火眼金睛,能很快找到规律并填出后面两组的另外一个字!(课件出示)

  吞—————————吴,甲——————————由

  杏—————————(呆),土————————— (干)

  指名口答。(说明原因。)

  教师:汉字真奇妙,有些汉字上下颠倒就有可能变成了另外一个汉字,那么数学中的数也有这种规律吗?学习了这节课,同学们就明白了。

  二、探究新知

  (一)引导质疑(教学例1)

  课件出示下列算式,让学生先计算,再观察,看看有什么规律。

  1、指名回答。

  2、归纳“倒数”的含义。

  乘积是1的'两个数互为倒数。(课件出示)我们可以说的倒数是,的倒数是,和互为倒数。

  3、引出课题“倒数的认识”。

  4、小组合作交流。

  教师:大家认真分析倒数的含义,讨论:在这句话里,你认为那些字比较重要?你是怎么理解“互为”一词的?

  学生回答后老师引导理解 “乘积”、“ 1”、 “两个数”、 “ 互为”比较重要。“ 互为”是指两个数的关系。说明这两个数的关系就像朋友关系一样是相互依存的,而不能孤立地说某一个数是倒数。

  (二)探究求一个数倒数的方法。(教学例2)

  1、让学生根据已学知识独立解决。(注意6的倒数怎样求)

  2、归纳求一个数倒数的方法。

  提问:你是怎样求一个数的倒数的?

  学生汇报,课件反馈。

  学生总结出求倒数的方法:分子、分母调换位置。

  讨论交流:1和0有没有倒数,如果有,是多少?没有,为什么?

  得出结果:1的倒数是1 ,0没有倒数。(板书:1的倒数是1,0没有倒数。)

  三、巩固练习:

  1、(课件出示做一做)指名同学上前板演,发现问题后强调书写格式,互为倒数,并不是相等,所以两数之间不能用等号。

  2、延伸:

  (1)怎样求整数(0除外)的倒数?

  a 课件出示让学生求8的倒数。

  b让学生再说几个整数(0除外)的倒数。

  c总结方法:整数做分母,分子是1。

  (2)怎样求带分数的倒数?

  a 课件出示让学生求x的倒数。

  b引导学生解答。

  c总结方法:先把带分数化成假分数,然后分子分母调换位置。

  (3)怎样求小数的倒数?

  a课件出示让学生求0.75的倒数。

  b引导学生解答。

  c总结方法:先把小数化成分数,真分数分子分母调换位置。如果是带分数就按带分数求倒数的方法求。

  3、解决问题:找出马小虎的日记错误并改正。(课件出示)

  今天,我学习了一个新知识——倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  (让学生找出错误,并说明原因。并引导全体学生总结,加深印象。)

  四、全课小结

  这节课大家通过自己的努力以及与别人的合作,表现非常出色!老师真高兴!谁能告诉大家自己有哪些收获?

  五、布置作业:

  作业:课本第25页1 、 4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,若是整数(0除外),先划成分母是1的分数。

  1的倒数是1,0没有倒数。

【倒数的认识教案】相关文章:

《倒数的认识》说课稿08-29

倒数的认识说课稿06-18

《倒数的认识》说课稿06-13

倒数的认识教学反思06-10

倒数的认识教学设计08-16

《倒数的认识》教学设计08-11

《倒数的认识》教学反思10-28

《倒数的认识》教学反思11-29

倒数的认识教学设计09-03

倒数的认识的教学设计08-07