《最小公倍数》教案
作为一位无私奉献的人民教师,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编收集整理的《最小公倍数》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《最小公倍数》教案1
设计说明
1.从学生已有的知识经验出发,促进知识的构建。
本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让学生对公倍数和最小公倍数产生感性的认识。利用最大公因数的知识迁移,让学生自己抽象出公倍数和最小公倍数的概念,从而激发学生的学习兴趣,激活学生的思维。
2.体现学生的主体地位,提高教学的实效性。
《数学课程标准》的理念倡导,要注重角色转变,改变在以往的教学中只注重对学生知识的传授,而忽略了学生的主观能动性,要让学生学会自主学习,让学生主动参与课堂教学,在教学中尊重学生,凸显学生的主体地位。本设计在教学如何找两个数的最小公倍数时,放手让学生自主探究出方法,并观察公倍数和最小公倍数之间的关系,让学生得到充分的思考,提高教学的实效性。
课前准备
教师准备 PPT课件 投影仪
学生准备 数轴卡片 彩色笔
教学过程
⊙复习旧知,引入新课
1.复习。
分别说一说4和6的倍数分别有哪些。
4的倍数 6的倍数
4 6
812
1218
1624
20xx
…………
2.导入。
师:我们分别列出了4的倍数和6的倍数。前面我们已经学过两个数公有的因数,今天来学习两个数公有的倍数。
设计意图:分别说出4和6的倍数,一是复习倍数知识,二是为学习公倍数和最小公倍数作铺垫,使学生的思维自然过渡到新知。
⊙公倍数与最小公倍数
1.探究概念。
(1)在数轴上表示数。
在数轴上分别找出表示4的倍数和6的倍数的点。(学生观察数轴,用两种不同颜色的笔在数轴上分别描出这些点)
(2)观察数轴,交流发现。
4和6公有的倍数有哪些?最小的是几?有没有最大的?(学生口答后,老师在投影仪上表示出来)
(3)迁移命名。
想一想我们已经学过的公因数和最大公因数,谁能给几个公有的倍数和其中最小的一个取名字?(公倍数 最小公倍数)
(4)理解意义。
请说一说什么是公倍数和最小公倍数。(学生口答:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数)
(5)集合表示法。
课件出示教材68页的集合圈。为什么集合圈里要写上省略号?(一个数的倍数的个数是无限的,几个数的.公倍数的个数也是无限的)
2.练习。(课件出示)
把不超过50的3和6的倍数、公倍数填在68页“做一做”中的集合圈里,再找出它们的最小公倍数。请一位同学板演,其他同学填在教材上,然后集体订正。
设计意图:通过引导学生对具体问题的进一步研究,帮助学生加深对公倍数、最小公倍数意义的理解,使表象更加清晰,由此让学生亲身经历一个从具体到抽象的教学过程。
⊙最小公倍数的求法
1.探究方法。
师:你是怎样求6和8的公倍数的?可以怎样表示?
(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。
(2)小组讨论,互相启发,再全班交流。
可能出现以下几种方法。
方法一 先分别写出6和8各自的倍数,再从中找出它们的公倍数和最小公倍数。
方法二 先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。
方法三 先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。
方法四 从小到大写出8的倍数,边写边判断是不是6的倍数,第一个6的倍数,就是6和8的最小公倍数。
《最小公倍数》教案2
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学准备:
长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。
教学过程:
复习
今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?
那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?
看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。
一、经历操作活动,认识公倍数
1、操作活动
提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看
拿出手中的图形,动手拼一拼。
学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。
提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)
铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)
2、想像延伸
提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。
生可能的想法:
⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。
在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)
⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。
如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?
3、揭示概念
讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)
说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。
引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索
提问:6和9的'公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?
学生自主活动,然后在小组里交流。
生可能想到的方法:
⑴依次分别写出6和9的公倍数,再找一找。
提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?
⑵、先找出6和倍数,再从6的倍数中找出9的倍数。
⑶、先找出9的倍数,再从9的倍数中找出6的倍数。
引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?
2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)
3、用集合图表示。
说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?
引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?
4、做“练一练”
要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。
集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)
三、巩固练习,加深对公倍数和最小公倍数的认识
1、做练习四的第1题
要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。
提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?
2、做练习四第2题
要求:先在表中分别写出两个数的积,再填空。
引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?
3、做练习四的第3题
要求:自己找出每组数的最小公倍数。
集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。
四、全课小结
提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?
引导:你还有什么疑问吗?
五、游戏活动
要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。
提问:涂色的方格里写的数与3和4有什么关系?
《最小公倍数》教案3
课时:1
教学准备:
教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。
2、通过输理、比较,建立相关概念的关系。
3、、在游戏、应用中体验数学的趣味性。
基本教学过程:
一、一、基本练习
1、复习找因数、公因数的方法:
练习第一题。
学生填写后,说说你是怎么想的。巩固找公因数的方法。
2、复习约分的方法:
练习第二题先约分,再连线。
二、运用知识模型:
1、复习分数的意义、约分等知识的综合运用。
第3题。
让学生自己用分数表示,并交流自己的思考方法。
2、第4题。
先让学生找出分数,并说说自己的思考方法?
3、第5题。
本题开放性强,学生可以自由分割,并用分数表示。
三、思考题:
本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。
四、实践活动:
先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。
四、总结:教学反思:
内容:公倍数与最小公倍数
课时:1
教学准备:
教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
基本教学过程:
一、一、创设活动情境,进行找倍数活动:
二、出示题目和8月份的日历:
1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。
2、把这些数写下来。
二、自主探索,总结找两个数的公倍数的方法:
1、观察这些数有什么特点?
2、再观察两人同时去少年宫的日子有什么特点?
3、师总结:揭示公倍数和最小公倍数的.概念。
填一填:第48页
①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。
②学生讨论交流找公倍数的基本方法。
③还有其他方法吗?(鼓励学生用其他方法找公倍数)
4、师总结:找公倍数和最小公倍数的方法
三、拓展引思:
1、第49页练一练
第一、二题
让学生独立填一填,再交流。
教学反思:
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
分数的大小
教学目标
1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。
2、进一步加深对分数意义的理解,培养学生的发散思维能力。
3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。
教学过程
(一)、创设情景谈话激趣
师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?
生:非常6+1幸运52
师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:
A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。
B、如果哪一组不听人家的回答则倒扣一颗星。
C、最后看哪一组胜利相应进行奖励。
师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)
《最小公倍数》教案4
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的'概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
《最小公倍数》教案5
教学内容:
苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。
教学目标:
1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。
2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。
教学重点:
求两个数的公倍数和最小公倍数。
教学难点:
理解求公倍数和最小公倍数的方法。
教学准备:
小黑板
教学过程:
一、揭示课题
揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)
提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?
引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)
二、学习新知
1.认识公倍数。
(1)出示例11,让学生说说知道了些什么,提出的什么问题。
引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?
交流:哪个正方形能正好铺满,哪个不能铺满?
提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?
说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。
(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。
交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)
你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?
(3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)
追问:8是2和3的公倍数吗?为什么不是?
那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?
2.求公倍数。
出示例12,明确要找6和9的公倍数和最小的公倍数。
让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的'?
结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。
小结:大家用不同的方法找出了6和9的公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。
追问:有没有最大的公倍数?为什么?
说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)
3.用集合图表示公倍数。
引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。
让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。
指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。
三、巩固深化
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习七第9题。
4.做练习七第10题。
四、总结提升
引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?
《最小公倍数》教案6
教学内容:教科书第30页,练习五第12~14题、思考题。
教学目标:
1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。
2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。
教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。
教学难点:弄清公倍数和公因数联系与区别。
教学过程:
一、揭示课题
今天我们继续完成一些公因数、公倍数的有关练习。
二、基础训练
1.写出36和24的公因数,最大公因数是多少?
2.写出100以内10和6的公倍数,最小公倍数是多少?
学生独立完成,汇报交流。
说说自己是用什么方法找到的?
三、综合练习
1.完成练习五第12题。
谁能说说什么数是两个数的公倍数?两个数的公因数指什么?
在书上完成连线后汇报方法。
你是怎样找出24和16的公因数的?你是怎样找到2和5的公倍数的?
2.完成第13题。
独立完成。交流各自方法。
3.完成第14题。
独立完成。交流各自方法。
求最大公因数和最小公倍数的方法有什么相同和不同?
什么情况下可以直接写出两个数的'最大公因数?什么情况下可以直接写出两个数的最小公倍数?
4.完成思考题。
(1)小组讨论方法。
(2)指导解法。
把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。
5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法
四、课堂
大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。
《最小公倍数》教案7
教学内容:书~23页例1、例2和“练一练”,练习四第1~4题。
教学目标:1、让学生认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。2、让学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、让学生在学习过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:1、理解公倍数和最小公倍数的含义。
2、掌握求两个数的最小公倍数的方法。
教学过程:
一、游戏导入,激发兴趣
谈话:今天我们先玩找朋友的游戏。
(黑板上标有4、6数字,其他同学的号码是他们其中一位手中卡片的倍数就请站起来,两位同学收上符合要求的号码贴在黑板上。)
出现争朋友的情况提问:你们为什么争朋友?(12、24等既是4的倍数,同时也是6的倍数)
那么12、24等数与4、6是什么关系呢?今天我们就来继续研究关于倍数的知识。
二、教学例1,认识公倍数
多媒体出示例1
1、想一想
谈话:如果用一些长是3厘米、宽是5厘米的长方形纸片分别铺在这两个正方形上,看看铺的结果怎样?(教师提供材料,如果学生不能解决可以拼一拼)
学生说猜想的结果和想法。
2、议一议
提问:为什么用这样的长方形纸片能正好铺边长6厘米的正方形?学生观察正方形的边长与长、宽之间的关系。
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺几次?怎样用算式表示?
铺边长8厘米的正方形呢?每条边都能正好铺完吗?
提问:这样的长方形纸片还能正好铺满边长是多少厘米的正方形?(同桌交流讨论)
组织学生说一说。
提问:能说说你的理由吗?
引导学生明确12、18、24……除以2和3都没有余数。
提问:6、12、18、24……这些数与2有什么关系?与3呢?学生发现6、12、18、24……既是2的倍数,又是3的倍数。
谈话:只要正方形的边长既是2的倍数,又是3的倍数,这样的正方形就能正好铺满。6、12、18、24……既是2的倍数,又是3的倍数它们是2和3的公倍数。(板书:公倍数)
提问:两个数的公倍数的个数是有限的还是无限的?为什么?
明确:因为一个数的倍数的.个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示。
提问:8是2和3的公倍数吗?为什么?
学生回答:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数。
三、教学例2,求两个数的公倍数和最小公倍数。
1、多媒体出示:6和9的公倍数有哪些?其中最小的公倍数是几?你有什么好方法能很快找出来?
学生讨论交流做法和想法。
教师组织交流:
学生想到的方法可能有:
(1)依次分别写出6和9的倍数,然后再找出它们的公倍数。
(2)先找出6的倍数,再从6的倍数中找出9的倍数。
(3)先找出9的倍数,再从9的倍数中找出6的倍数。
引导:这三种方法你觉得哪一种方法简捷一些?
谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数。(板书:最小公倍数)
3、集合图
谈话:我们可以画图表示6的倍数、9的倍数和6和9的公倍数之间的关系。
展示书上的集合图,你能从图中看出哪些数是6的倍数吗?哪些数是9的倍数?6和9的公倍数是哪些数?图中的三个省略号各表示什么?6和9的最小公倍数是多少?
4、给课始活动时的板书加上集合圈。提问这里是否需要加省略号?明确什么情况下需要加省略号。
四、巩固练习,加深对公倍数和最小公倍数的认识
1、完成“练一练”。
2、做练习四第2题。
引导:4与一个自然数的乘积都是4的什么数?5、6与一个自然数的乘积呢?怎样找4和5的公倍数?填空时还要注意什么?
3、做练习四第4题。
说明题意,引导学生思考,哪些方格两种棋都会走到?这些方格中的数有什么共同特点?动笔涂一涂。
然后同桌开展活动,玩一玩,看看红棋和黄棋是否都走到涂色的方格中。
五、全课小结(略)
六、布置作业1、练习四第1、3两题。 2、补充习题11页。
课后反思:
1、我为谁备课?
根据教材的安排,教学中可以将引进概念的环节分成三个步骤。第一个步骤是操作,让学生用长3厘米、宽2厘米的长方形纸片分别铺长6厘米和8厘米的两个正方形。备课时,我认为这个环节简直是低估学生,上学期学生多次做过类似这样的题目,学生解决这个问题不是“小菜一碟”吗?于是,我制作一套材料以备不时之需。课中,发现有些学生对能否铺满边长8厘米的正方形有异议。还好准备一套,立即演示给学生看。看似解决了问题,其实是我剥夺了学生操作感悟的机会。所以,有时自己的想法往往又高估了学生,备课还是要从学生的实际出发。当然,要从学生的实际出发,这一节课的内容就无法完成,是想照顾到全体还是想完成一节课,孰是孰非?
2、我为谁上课?
按照教材的建议,这一课时要完成例1、例2和练一练以及练习四1~4题的教学。每次公开课后我都发现学生的课后作业令人失望。究其原因,为完成教学任务,课上即使发现学生没有得到充分的思考,或者练习没有都完成,也不肯为他们停留,为他们等待,而是硬着头皮往下开,导致“夹生饭”的出炉。其实,我知道学生参差不齐,想要在一节课中让每个人都能研究透那是不可能的,所以我把希望寄托在下一节课。公开课只想给听课老师留下一个完整的一节课的印象,感觉公开课不是为学生而开了。所以我也特别希望听课的评价体制能够有所变化,我们是想听真实的课,了解学生的真实情况,还是想看一节课的流程,至少这是我的一个困惑。我究竟应该怎样上课?
《最小公倍数》教案8
教学要求
①使学生理解公倍数、最小公倍数的概念。
②使学生初步掌握求两个数的最小公倍数的方法。
③培养学生抽象概括的能力和实际操作的能力。
教学重点理解公倍数、最小公倍数的概念。
教学难点求两个数的最小公倍数的方法。
教学用具投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和86和1113和2617和51
2、求30和42的`最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4和6公有的倍数有:12、24、36......
其中最小的一个是12。
②也可以用图来表示。
4的倍数6的倍数
48162012246830
..................
4和6的公倍数
(4)抽象、概括。
①什么是公倍数、最小公倍数?(让学生说)
②指导学生看教材第71页有关公倍数、最小公倍数的概念。
(5)尝试练习。
做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
218230
39315
35
18=2×3×3
30=2×3×5
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2×3×3×5)
(4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:
2×3×3×5=90
(5)教学求最小公倍数的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最小公倍数了?
(6)尝试练习。
做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求最小公倍数的方法。
①谁能说说求最小公倍数的方法。
②指导学生看第74页求两个数的最小公倍数的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
《最小公倍数》教案9
教学内容:书P.22~23页,例1、例2、练一练,练习四第1~4题。
教学目标:
1.让学生通过具体的操作和交流活动,认识公倍数与最小公倍数,会用举例的方法求10以内两个数的最小公倍数。
2.让学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力。
3.让学生参与学习活动的过程中,体验学习和探索活动的乐趣,增强对数学学习的信心。
教学重点:
认识公倍数与最小公倍数,会求10以内两个数的最小公倍数。
教学难点:看懂并会填写用集合图表示的两个数的倍数和公倍数,理解在不同情境下倍数、公倍数的有限与无限。
教具准备:
1、长3厘米、宽2厘米的长方形纸片。
2、边长6厘米和8厘米的正方形。
教学过程:
一、游戏引入,认识公倍数。
游戏激趣
师:今天是什么日子?(圣诞节)
对啊,圣诞老爷爷来给我们送礼物了,瞧!(出示图)
我们每一位同学对应的都有一个学号,学号是3的倍数的同学,你们的礼物在圣诞帽里;学号是5的倍数的`同学,你们的礼物在圣诞袜里。(请请学生站一站,选一两个说一说)(出示图,分别在两幅图的下面写上学号。)
观察一下,谁是今天最幸运的,为什么?(15、30号)为什么?
(图片:把15、30移至中间,闪烁。)
师:像这样3、5、15这样的数有怎样的关系呢?今天这节课我们就来研究这样的问题。
二、教学例1
1、操作活动。
出示边长6厘米、8厘米的两个正方形。
如果用一些长3厘米、宽2厘米的长方形纸片分别铺在这两个正方形上,你觉得可以正好铺满哪个正方形?
2、学生分组活动,在小组里铺一铺,说一说。
3、汇报交流。
通过刚才的活动,你们发现了什么?
为什么用这样的长方形纸片能正好铺满边长6厘米的正方形?
引导学生观察正方形边长与长方形的长、宽之间的关系来回答:
(1)用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(出示图)
(2)铺边长8里面的正方形呢?每条边都能正好铺完吗?
(8÷3=2……2,8÷2=4)(出示图)
(3)讨论:还能有边长是多少厘米的正方形也能用这样的长方形来铺满?(板书:12厘米、18厘米、24厘米……)
说说你的理由。
明确:12、18、24……除以2和3都没有余数。
演示:铺满边长是12厘米的正方形(师:横里铺几个?铺了几行?)
(4)6、12、18、24……这些数与2有什么关系?与3呢?(6、12、18、24……既是2的倍数,又是3的倍数。)
4、只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书)
(板书课题:公倍数)
5、2和3的公倍有多少个呢?为什么?
(用省略号来表示)
6、8是2和3公倍数吗?为什么?(尽管8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数)
:同学们,要解决例1这样的题目就要学会找两个数的公倍数。那么怎样去找两个数的公倍数呢?
二、教学例2
1、出示例2。
6和9的公倍数有哪些?(其中最小的公倍数是几?)(后面出示)
(1)你准备怎么去找,同桌交流方法
师:会了吗?请你们在草稿本上写一写。
师生交流,说说你是怎样想的?(展示)为什么它们是6和9的公倍数?
(2)有没有不一样的方法?(讨论)
(师提示:先找9的倍数,想一想6和9的倍数公倍数是不是都在9的倍数里?能不能从中找出6的倍数来?)
学生在草稿本上写一写,交流(展示)
:可以先找9的倍数,再在9的倍数里找6的倍数。
(3)学生说另一种方法:先找6的倍数……
学生在草稿本上写一写,交流(展示)
2、6和9的公倍数中最小是几呢?(显示于例题上)
因此我们就说18就是6和9的最小公倍数。(板书课题:最小公倍数)
3、我们有这样的3种方法找两个数的公倍数,请你一下这3中方法。
4、那么(指着板书)2和3的最小公倍数是多少?
5、我们可以用集合图来表示6的倍数、9的倍数,6和9的公倍数。
(出示集合图,一半一半地、边问边出示)
(课件显示将两个集合圈向中间靠拢,形成交叉状。)
师:中间部分应该填什么?(课件显示将两个集合圈中的相同的倍数移动到交叉部分,并在下面标出“6和9的公倍数”)
师:左边圆圈里的数表示?右边圆圈里的数表示?两个圆圈相交的部分又表示什么?(课件闪烁圆圈)
6、完成练一练。
先在2的倍数上画“△”,在5的倍数上画“○”,然后完成填空。
汇报交流。(展示)
师:说说你是怎样想的?
问:这里的省略号哪些同学点了?哪些同学没点?
师:像这样没有明确范围的我们可以加上省略号。
问:2和5的公倍数有什么特点?(是10的倍数,个位上是0的自然数)
三、巩固练习
1、完成练习四第1题。
(1)独立完成。
(2)汇报校对。(先填6和8的公倍数)
这里需要写省略号吗?为什么?
2、完成练习四第2题。
(1)出示空白表,师生交流怎样看、怎样填?
(2)学生完成填表。
(拓展)
师:这里都是求两个数的最小公倍数,如果让你求4、5、6三个数的最小公倍数,是多少呢?想一想。
补充表格,学生观察。
师:两个数有公倍数,三个数也有公倍数,四个、五个、……同样也有公倍数。
四、课堂
今天学习了什么内容?说说看什么是两个数的公倍数和最小公倍数?
游戏:(出示)圣诞帽、圣诞袜
4的倍数6的倍数
师:现在学号是几的同学最幸运?
怎样设计让尽量多的人幸运?
《最小公倍数》教案10
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。
(4)求三个数的的方法。
求三个数的与求两个数的`的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
《最小公倍数》教案11
教学目标
1.掌握公倍数、最小公倍数两个概念.
2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.
教学重点
建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.
教学难点
理解求两个数最小公倍数的算理.
教学步骤
一、铺垫孕伏.
1.导入:这节课我们开始学习有关最小公倍数的知识.
(板书:最小公倍数)
2.复习倍数的概念.
二、探究新知.
教学例1
例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?
4的倍数有:4、8、12、16、20、24、28、32、36……
6的倍数有:6、12、18、24、30、36……
4和6的公倍数有:12、24、36……
其中最小的一个是12.
1、学生分组讨论总结公倍数、最小公倍数的意义.
2、用集合图表示4和6的公倍数.
3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?
明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.
4、反馈练习.
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.
明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.
(二)教学例2
引入:我们用分解质因数的方法求两个数的最小公倍数.
例2:求18和30的最小公倍数.
1、用短除式分别把18和30分解质因数.
板书:18=2×3×3
30=2×3×5
教师提问:18的倍数必须包含哪些质因数?
(18的'倍数包含18的所有质因数)
30的倍数必须包含哪些质因数?
(30的倍数包含30的所有质因数)
18和30的公倍数必须包含哪些质因数?
(既要包含18的所有质因数,又要包含30的所有质因数)
2、观察集合图:18和30的最小公倍数应包含哪些质因数?
教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.
3、小组讨论:如果少一个或多一个质因数行不行?
教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.
板书:
18和30的最小公倍数是2×3×3×5=90
4、反馈练习.
(1)先把下面两个数分解质因数,再求出它们的最小公倍数.
30=()×()×()
42=()×()×()
30和42的最小公倍数是()×()×()×()=()
(2)A=2×2B=2×2×3
A和B的最小公倍数是()×()×()=()
(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?
可能错在哪里?
5、求最小公倍数的一般书写格式.
①引导学生把两个短除式合并成一个.
板书:
②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.
③反馈练习:求30和45的最小公倍数.
④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.
⑤反馈练习:求下面每组数的最小公倍数
6和824和20xx和2116和72
三、全课小结.
今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.
四、随堂练习
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.
2.判断.
(1)两个数的积一定是这两个数的公倍数.()
(2)两个数的积一定是这两个数的最小公倍数.()
五、布置作业.
求下面每组数的最小公倍数.
12和1530和4036和5422和33
《最小公倍数》教案12
课题一:两个数的
教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。
教学重点 理解公倍数、的概念。
教学难点 求两个数的的方法。
教学用具 投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和8 6和11 13和26 17和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1 及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4 和6公有的倍数有:12、24、36
其中最小的.一个是12。
②也可以用图来表示。
4的倍数 6的倍数
4 8 16 20 12 24 6 8 30
4 和6 的公倍数
(4)抽象、概括。
①什么是公倍数、?(让学生说)
②指导学生看教材第71页有关公倍数、的概念。
(5)尝试练习。
做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
2 18 2 30
3 9 3 15
3 5
18=233
30=235
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2335)
(4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:
2335=90
(5)教学求的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出了?
(6)尝试练习。
做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求的方法。
①谁能说说求的方法。
②指导学生看第74页求两个数的的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
《最小公倍数》教案13
教学目标:
1、结合具体情境,理解公倍数和最小公倍数的意义,体会公倍
数和最小公倍数的运用。
2、探究找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、能积极探究生活中的数学问题,体会数学问题的探索性和挑战性。
教学重点:探究找公倍数的方法。
教学难点:会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一:复习导入,初步感受
师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?
生:3的倍数有3、6、9、12、15,…
师:2的倍数呢?
生:2的倍数有2、4、6、8、10,…
师:3和2的最小倍数各是几?
生:都是它们本身。
师:那么,为什么在说倍数时要加省略号呢?
生:一个数的倍数个数是无限的,所以要加省略号。
(师出示教材第51页数表,在这张数表中有50个数。请同学们用△标出4的倍数,用○标出6的倍数。)
(生操作圈数)
师:谁能说说4的倍数?
生:4的倍数有4、8、12、16、…,48。
师:6的倍数呢?
生:6的倍数有6、12、18、24、30、…,48。
师:在圈数时,你们发现什么?
生:我们发现有些数既是4的倍数,又是6的倍数。
师:能举例说明吗?
生:如12、24、36、48。这些数既用△标出,又用○标出,所以它们既是4的倍数,又是6的倍数。
二、顺理成章,概念
师:那么,能否给这些数起一个名字吗?
生1:我起的名字叫共同的倍数。
生2:这个名字太长了,叫公倍数更好.
师:这个名字起的好,在数学上把这些数都叫做公倍数,那么谁来一下什么叫做公倍数?
生3:公倍数就是这几个数共同有的倍数.
师:那么,在这几个数的公倍数中,谁给"12"也起个名字?
生4:它是最小一个,所以它的名字叫最小公倍数.
师:有没有最大公倍数呢?
(师生共同讨论)
三.方法,实际应用
师:请同学们回顾一下,刚才我们是用什么方法引出公倍数的?
(学生的发言,板书:枚举法)
师:在寻找最小公倍数时,经常用到枚举的方法。下面请用这个方法作第51页的填一填。
(学生练习,在他们汇报时,,教师应指导集合圈的写法。)
师:谁来汇报的结果?
(学生展示各自的练习)
师:在做这一题时,还有其他的想法吗?
生1:我认为用书上的方法寻找最小公倍数太麻烦,所以我不用这个方法也能求出6和9的最小公倍数。我在想6的倍数,想到8这个数时,就发现它也是9的倍数,那它一定是6和9最小公倍数,这样就不用写到50了。
生2:我同意他的看法,不过应该从9的'倍数找起会更快。因为9的倍数比6的倍数大,会找的更快。
生3:我发现3和5的最小公倍数是15,就是3×5得到的,所以求最小公倍数就用两个数相乘就行了。
生4:我不同意,6和9相乘得54,而6和9的最小公倍数时18。
生5:我发现54要是除以6和9的最大公因数3就是18了。
师:那么,,同学们对这几位同学的发现有什么看法?不妨通过几组数来考证一下这几位同学的想法,从而一下求最小公倍数的几种方法。
(出示教材第52页第3题,学生独立求最小公倍数,然后在小组里讨论有什么发现。师生共同求3种类型的数的最小公倍数的方法。)
(出示教材第52页的第4题,讨论解决具体的实际问题。)
四、收获
师:今天的学习你有什么收获?
师:()同学们不仅很好地理解了公倍数和最小公倍数的含义,又掌握了求公倍数和最小公倍数的的方法。
《最小公倍数》教案14
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。
3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:理解两个数的公倍数和最小公倍数的意义。
教学难点:探究找公倍数和最小公倍数的方法。
教具准备:多媒体课件
教学过程
一、创设情境
教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书:
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
二、尝试探讨
1、几个数的公倍数和最小公倍数的概念教学
我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?
师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)
师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)
我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)
师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?
师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)
师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)
师:这“其中最早的一天”,我们一起给它起个名字,叫什么?
(根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)
板书:
4的倍数:4、8、12、16、20、24、28、……
6的倍数:6、12、18、24、30、……
4和6的公倍数:12、24、……
4和6的最小公倍数:12
教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:
出示集合图:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
三、深化概念
师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。
请同学们把书翻到51页看例子,填一填
师:什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?
板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
这就是我们今天要学习的内容。(揭示课题:最小公倍数)
师:那么我们刚才是怎么找出最小公倍数的呢?
生说,师写(列举法)
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
4.[出示]找最小公倍数
2和69和186和245和353和9
3和57和54和99和11
让学生找出每组数的公倍数。
师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?
小组讨论,之后汇报。
生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生:2和6的最小公倍数是12,并不是它们的乘积。
生:大数要是小数的.倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。
师:你们还能发现了什么?
生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。
师总结
师;你们能举一些这类的例子吗?
5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数
3和610和83和95和46和59和42和76和8
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
四、利用最小公倍数解决生活问题,
出示:
(1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”
齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。
(2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
(设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)
五、小结
今天学习了什么内容?什么叫最小公倍数?
我们今天学习了求最小公倍数的哪几种情况?
怎样才能很快地求出它们的最小公倍数?
板书:找最小公倍数
一般关系列举法
倍数关系较大数
特殊关系
互质关系两数的乘积
《最小公倍数》教案15
教学要求在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最小公倍数。
教学重点掌握求两个数的最小公倍数的方法。
教学难点正确、熟练地求出特殊情况下两个数的最小公倍数。
教学过程
一、创设情境
1.口算练习:将练习十五的'第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是最小公倍数?
3.求24和32的最小公倍数。
4.说说下面每组中的两个数有什么关系?
12和364和5
二、揭示课题
我们已经学会求两个数的最小公倍数,这节课我们将继续学习求特殊情况下两个数的最小公倍数。(板书课题:求特殊情况下两个数的最小公倍数)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的最小公倍数。
(2)观察结果:通过这两组数的最小公倍数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材的结论。
(4)尝试练习。
做教材下面的“做一做”,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的最小公倍数,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打√,错的打×,再点几名学生讲打√或×的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
【《最小公倍数》教案】相关文章:
最小公倍数教案10-25
精选《最小公倍数》教案4篇11-10
【精选】《最小公倍数》教案3篇06-18
《最小公倍数》教案汇总七篇06-24
《最小公倍数》教案锦集七篇10-24
《最小公倍数》教案范文锦集十篇07-13
最小公倍数教学设计10-30
最小公倍数教学设计07-11
《最小公倍数》教学反思05-24
最小公倍数教学设计14篇08-11