《倍数和因数》的教学反思

时间:2025-09-03 09:23:39 教学反思 我要投稿

《倍数和因数》的教学反思

  作为一名人民教师,我们要有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,我们该怎么去写教学反思呢?以下是小编精心整理的《倍数和因数》的教学反思,希望能够帮助到大家。

《倍数和因数》的教学反思

《倍数和因数》的教学反思1

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的.概念。我觉得这局部内容同学初次接触,对于同学来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕获生活与数学之间的联系,协助同学理解因数倍数相互依存的关系。所以在上课之前我特意和小朋友们玩了一个小游戏。用“ 我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。同学对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来协助同学理解因数和倍数的概念。

  一是教材虽然不是从过去的整除定义动身,而是通过一个乘法算式来引出因数和倍数的概念,但实质上任是以“整除”为基础。所以我上课时特别注意让同学明白什么情况下才干讨论因数和倍数的概念。我举了一些反例加以说明。二是要同学注意区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1。5是0。3的5倍”,但我们只能说“15是3的倍数”,却不能说“1。5是0。3的倍数”。我在课堂上反复强调,协助小朋友们认真理解辨析,所以同学一节课下来对这组概念就理解透彻了,不会模糊了。

《倍数和因数》的教学反思2

  在教学因数与倍数时,我们应该注意以下几点:

  1. 制定清晰的教学目标,让学生知道他们需要学到什么,以便更好地指导学生的学习。

  2. 应该分步骤教学,先从基础的概念开始,逐步引导学生深化理解。

  3. 与生活实际结合,提供足够的实例让学生能够更好地理解和应用所学到的知识。

  4. 多样化教学方法,采用多种不同的教学方法,以适应不同学生的.学习需求。

  5. 不断进行教育反思,检查教学效果,及时调整教学方式和方法,以提高教学效率。

《倍数和因数》的教学反思3

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不一样。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,a能整除b。在此基础上再引出因数和倍数的概念。而此刻的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。但是若老师对整除的概念不做讲解的话,今后的知识学习可能会造成一些缺陷,因此我在这课时中,结合老教材的知识给学生进行了渗透,学生学习起来掌握的很好。利用除法、乘法都能很快的找到一个数的因数与倍数。

  因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用生活与数学之间的联系,来帮忙学生理解因数倍数相互依存的关系。比如,我上课前利用班级中学生的父子关系和朋友关系来说明“朋友、父子”词语的.含义,它是指两个人之间的一种关系,只能造句为“某人是某人的朋友”。这样的话局把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计较自然贴切,让学生感受到数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮忙学生理解了倍数和因数之间的相互依存关系。

  教育家第斯多惠曾说过:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”因此教学中,教师要重视学生的主体地位,给学生带给充分思考和自我表现的空间,引导他们利用已有的知识去探索发现新的知识。如何找一个数的因数是这节课的重点也是难点。根据学生的实际状况,我进行了重组教材,先让学生根据乘法(除法)算式“一对对”地找出18、15、24的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生带给了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。学生在自我找因数和倍数练习后又总结了最大的因数和最小的倍数都是它本身。我想这就应比教师的传授要好百倍。

  一节课下来,学生学习起来十分简单,尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,学生乐学,思路清晰。以上是自我教学后的一点感悟。

《倍数和因数》的教学反思4

  反思教学效果总结了的原因有以下几点:

  (一)素数和合数的判断不熟练。一些数如:49、51、91这些数看上去是素数,但其实是合数。这些数经常被学生误认为是素数而导致错误,原因是这些学生就简单的看看,而不愿意用2、3、5等素数去尝试,努力寻找是不是有第3个因数存在。

  (二)意思相同,但语句表述不同时,有的学生就不能正确理解。如:在上面的数只有两个因数的数有哪些?其实这道题目就是问在上面的数中素数有哪些。

  (三)有的学生缺少分析理解,研究和判断的能力,判断和选择题的错误比较多。例如:1的倍数肯定是奇数。如果一个学生先找到1的倍数,然后根据数的特点作出正确的判断。但有的学生看到1是个奇数,然后就简单地做出它的倍数也是奇数想法。例如:一个数的倍数一定比它的因数大。如果学生找一个数,看看它的最小倍数是哪个?找找它的最大因数是哪个?这样不难找到正确的答案。但是有的倍数简单地被题目的意思误导,加上平时的练习中还有倍数一般都是大的,因数一般都是小的概念,学生容易误判。

  教学中,我和学生有时太满足于平时练习的结果,而缺少让学生进行数学思考和表达能力的过程训练。看来在以后的教学中,我要继续改变教学观念,要高度尊重学生,依靠学生,把以往教学中主要依靠教师转变为依靠学生。

  建议

  1、在新知教学中,注重引导学生进行探究。在本单元中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数” ,找一个数的因数是本课的难点。应该说,找出36的几个因数并不难,难就难在找出36的所有因数。教学中,建议教师不要把方法简单地告诉学生,而是让学生独立去探究,独立写出36的所有因数,在学生反馈的基础上教师再引导学生对有序和无序作比较,学生才能在比较、交流中感悟有序思考的必要性和科学性。交流的过程正是学生相互补充、相互接纳的'过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。这是新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。

  2、寓教于乐,游戏中进行相应的巩固练习。本节课是一节概念课,内容比较枯燥,课本上的练习形式也比较单一,所以在认识倍数和因数后,应安排有趣味的游戏,比如数字转盘游戏,让学生看转盘说指针停止时,内圈的数与外圈的数的关系,进一步认识倍数和因数,又能从中发现倍数和因数的相互依存的关系。在学会找倍数和因数之后也可设计游戏,如:“猜猜一位老师的电话号码”,在一个八位数的号码中已知其中四位,根据有关倍因数关系的问题请学生找出未知的四位号码,以提高学生学习的积极性,稍有难度的练习给学有余力的学生一个证明自己能力的机会,让学生在数学活动中体验到数学学习的趣味性和挑战性,学生运用所学知识解决问题,体会到了学习新知识后的成就感。

  3、教师要注重评价的导向作用,让学生在评价中成长。在第一课时学生交流12的因数时,教师展示了三位同学的作业:第一种是无序的,第二种是从小到大有序的,第三种是一对一对有序的。接着老师让第一种方法的学生说说自己的想法,并让其他同学评论,此时大多数学生的评价都认为不好,找得缺漏、无序,这时其实作为老师是否可以问问这种答案“有没有值得肯定的地方?”,毕竟找到的这些答案都是正确地,然后再去寻找更好的方法。如果老师能经常注意这样引导评价,学生自然而然地意识到要先看别人的优点,再看别人的缺点,也给了刚才那位学生一个心理上的安慰,使他能更积极地投入到学习当中去。

《倍数和因数》的教学反思5

  我在教学时做到了以下几点:

  (1)密切联系生活中的数学,帮忙学生理解概念间的关系。

  今日在教学前,我让学生学说话,就是培养学生对语言的概括本事和对事物间关系的理解本事。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮忙学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系。

  (2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下头学习如何找一个数的倍数奠定了良好的基础。这样不仅仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都能够找到因数和倍数。

  (3)根据学生的实际情景,教学找一个数的因数的'方法,虽然学生不能有序地找出来,可是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易理解,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。

  (4)设计趣味游戏活动,扩大学生思维的空间,培养学生发散思维的本事。譬如“找朋友”游戏,答案不唯一,学生思考问题的'空间很大,培养了学生的发散思维本事。我手里拿了5、17、38几张数字卡片,让学生确定自我的学号数是哪些数的倍数,是哪些数的因数,如果学生的学号数是教师出示卡片的倍数或因数就能够站起来。最终问能不能想个办法让所有的学生都站起来。出示地卡片应当是几,找的朋友应当是倍数还是因数?学生应对问题积极思考,享受了数学思维的欢乐。

《倍数和因数》的教学反思6

  一、结合实例,认识理论知识

  教学的起点是对定义进行介绍、分析与阐述。例如,对于倍数与因数的相关介绍,应该从数学等式出发,运用“35=5×7,36=4×9=2×2×3×3”等式子,引导学生掌握基础理论知识。如,我们只在自然数(0除外)内研究倍数与因数,倍数可以分成几个因数的乘积,也就是说倍数是等式一边较大的数。由此引申出质数与合数,质数是除了1和它本身之外,不能被其他数整除的正整数,又称素数。质数只有1和它本身两个因子,而合数有超过2个因子。0与1既不是质数也不是合数。倍数、因数是相互的概念,质数与合数共同构成了除1以外的正整数。

  在了解了倍数、因数相关理论知识以后,借助练习题,引导学生深入巩固和加深对倍数、因数相关知识的理解,并进一步引导学生找出一个数的所有因子。如,归纳猜想“是6的倍数一定是2和3的倍数吗?是14的倍数一定是哪几个数的倍数?”通过逐步深入,鼓励学生发散思维,找出规律。

  二、点出特征,发现特殊规律

  有了扎实的理论知识,进一步需要强化学生思维,鼓励学生运用数学的思维与方法找出相关问题的规律,以此强化学生数学科学素养。小学生由于年龄小,对于一些未知的事物具有很大兴趣,教学需要结合学生思维特点,运用科学的引导方法,鼓励学生自主实践,探索分析,找出规律。通过点出特征,鼓励学生发现特殊规律,强化学生学习积极性与主动性,由此促进学生创新思考,增加对数学学习的热爱和兴趣。

  例如,以探索活动“2、5倍数的特征”、“3倍数的特征”为例,展开兴趣小组合作交流活动。教师设计百数版,或者借助多媒体展开教学,结合提问教学,引导学生思考,指导学生思考方向。在从左到右,从上到下依次排列的1~100个数中,找出5的倍数,用红色彩笔圈出来,在这100个数中,将2的倍数用绿色彩笔点出来,将3的倍数用白色彩笔勾起来。学生分为几个小组,每3位同学一组,在活动中发现,5的倍数末尾都是0或5,2的倍数末尾是0、2、4、6、8,3的倍数各个位数加起来的和也是3的倍数。通过点出特征,引导学生发现规律,掌握数学知识与学习方法。

  三、实施探索,有效强化思维

  为加深学生对倍数与因数相关知识的印象,教师组织展开小组合作趣味活动。例如,将学生分为几个小组,每个小组5人,1号同学任意写一位三位数交给2号同学,2号将这个数按同样的顺序再写一遍成为6位数,交给3号同学,3号同学除以11交给4号同学,4号同学将得到的数除以13交给5号同学,5号同学除以7公布答案。根据这个游戏活动,学生发现答案和1号同学写出的数字一样。之后,教学引导学生思考、猜想与归纳,得出11×13×7=1001,所以2号先将数扩大1001倍,再经过三位同学缩小1001倍,得到原来的数字。又如展开探索活动,将从左到右,从上到下排列的1-100,通过先划掉1,再划掉除2外2的倍数,再划掉除3外3的倍数和除5外5的倍数,以此下去,得出1-100内所有质数。通过实施游戏探索活动,有效强化学生思维,探索数学科学素养。

  四、总结归纳,促进自主实践

  知识的起源、发生与发展是循序渐进的过程,在了解了基础理论以后,学生对知识的'了解会不断深入,遵循理论认识、实践探索、总结归纳、分析思考、构建知识网络等一系列的思维运行过程。

  例如,在课后“读一读,做一做”中,有关于“哥德巴赫猜想”的一个探索习题。可以将该习题改成为学生自主探索实践的课外活动内容。借助哥德巴赫猜想的偶数情形“任何不小于4的偶数都可以写成两个质数相加的形式”,如4=2+2,6=3+3,8=3+5,以及奇数情形“任何不小于7的奇数都可以写成三个质数的和”,如7=2+2+3,9=2+2+5,以及我国数学就陈景润的“1+2”定理,通过引导学生观察、分析、猜想与验证,鼓励学生分小组探索、互助交流与实践探究,广泛查阅相关资料,深入探索数学知识的规律和奥秘。

《倍数和因数》的教学反思7

  本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。

  今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的`基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

  找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。

《倍数和因数》的教学反思8

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

  虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

  11÷2=5……1。问:11是2的.倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

  特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

《倍数和因数》的教学反思9

  本节课是在学生已经学习了一定的整数知识的基础上进行教学的。

  课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。

  其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

  本节课的不足之处:

  1.练习设计容量少了一些,导致课堂有剩余时间。

  2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。="background:#b2ec0a;">

  12、《倍数和因数》教学反思

  教学中我发现倍数和因数这一内容与原来教材比有了很大的`不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的因数,接下来4和12的关系,学生都争者要回答。

  如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多

《倍数和因数》的教学反思10

  《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的`意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。

《倍数和因数》的教学反思11

  教学目标:

  1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。

  2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

  3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

  教学重点:

  理解因数和倍数的含义。

  教学难点:

  探索并掌握找一个数的倍数和因数的方法。

  教学过程:

  一、认识倍数和因数

  1、操作活动。

  (1)小黑板出示要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。

  (2)整理:全班交流,分别板书4×3=1212×1=126×2=12

  3、学习“倍数”和“因数”的概念

  (1)谈话:刚才同学们通过不同的摆法摆出了不同的长方形,而且还写出了3个不同的乘法算式,今天,我们就一起来研究乘法算式中,数与数之间的关系。(出示:倍数和因数)

  (2)根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?

  板书:12是4的倍数,12是3的倍数

  4是12的因数,3是12的'因数

  (3)根据6×2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12×1=12呢?

  (4)练一练:从3×6=1836÷4=9中任选一题说一说。

  为什么4和9是36的因数?

  4、小结:根据乘法或除法算式我们可以确定谁是谁的因数,谁是谁的倍数。为了方便,在研究倍数和因数时,所说的数一般指不是0的自然数。

  二、探索找一个数的倍数的方法

  1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数

  提问:3的倍数只有这两个吗?

  你还能再写出几个3的倍数?

  你是怎样想的?

  你能按照从小到大的顺序有条理地说出3的倍数吗?

  你能把3的倍数全都说完吗?

  可以怎样表示?

  2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)

  3、试一试:

  (1)2的倍数有

  (2)5的倍数有

  4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?

  5、练一练:想想做做2

  三、探索求一个数的因数的方法

  1、提出问题:你能找出36的所有因数吗?

  2、四人小组合作完成

  3、交流整理找一个数的因数的方法。

  4、试一试(既要一组一组地找,又要按次序排列)

  15的因数

  16的因数

  5、比一比:根据上面几个例子,你发现一个数的因数有什么特点?和同桌说一说

  6、练一练:想想做做

  四、课堂总结。

  1、这节课,你有什么收获?

  五、巩固提高

  1、判断

  (1)12是倍数,3是因数

  (2)6既是2的倍数,又是3的倍数。

  (3)25以内4的倍数有:4,8,12,16,20,24……

  (4)6的最小倍数是12,12的最小因数是6。

  2、看谁反应快

  游戏准备:学生按学号编成连续的自然数。(课前)

  游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?

  (1)谁的学号是5的倍数

  (2)谁的学号是24的因数

  (3)谁的学号是30的因数

  (4)谁的学号是1的倍数

  反思:

  在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。

《倍数和因数》的教学反思12

  1倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,在这之前学生还没有学习小数乘除法,只接触过整数乘除法,因此教材通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。

  2要求学生用乘法算式表示自己的长方形的不同摆法,帮助学生建立起乘法意义的.表象,为后面利用乘法找因数和倍数埋下伏笔。

  3重视说的训练,要求具体明确。“谁是谁的倍数,谁是谁的因数”当学生说到12*1=12时,感到有些拗口,教师即时鼓励,体现了数学的人文精神和不放过任何细节的作风。

  4如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。

  5练习形式活泼多样,即颠覆传统又扎实训练。

《倍数和因数》的教学反思13

  一、教材与知识点的对比与区别。

  1、对比新版教材知识设置与传统教材的区别。

  有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:

  (1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

  (2)“约数”一词被“因数”所取代。

  这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:

  学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。

  2、相似概念的'对比。

  (1)彼“因数”非此“因数”。

  在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。

  (2)“倍数”与“倍”的区别。

  “倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。

  二、教法的运用实践

  1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。

  2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。

《倍数和因数》的教学反思14

  一、“倍数和因数与“倍数和约数”这两种说法必须要分清。

  “倍数和因数”与“倍数和约数”这两种说法只是新旧教材的说法不一样而已,其实都是表示同一类数。(即因数也是约数)

  二、为什么第十教科书上讲“倍数与因数”的时候不提整除。

  也许我的头脑还受旧版教材的影响,我认为说到“倍数与因数”必须要谈到整除,因为整除是研究“因数和倍数”的条件,学生在没有这条件学习整除,只要教师的教学方法稍有不慎,学生会很快误入小数也有因数;可是我在实际的教学过程中,也体会到了教材中不提整除的好处。而我的心里却又产生了一个新的疑问,S版教材到底在什么时候于什么数学环境下才提出“整除”这个概念呢会不会在六年级课改才出现呢我期待着。

  三、教学2、5和3的倍数教师应注重“灵活”。

  1、在教学2和5的倍数时,是用同一种方法找出它们倍数的,学生很容易掌握,也很快就能把2和5的倍数说出,并能准确找出各自的倍数,此时,教师应把学生的思维转到同时是2和5的倍数怎样找之后引导学生归纳出同时是2和5的倍数的'特征,所以,让学生的知识面进一步加大。

  2、教学3的倍数的特征时,教师首先让学生用2和5的倍数的方法去找3的倍数的特征,让学生尝试这种方法是找不到3的倍数的特征,这时,教师应当引导学生对写出的3的倍数,要用另一种方法去归纳、总结3的倍数的特征,运用这一特点,教师能够有意识地写些数(有3的倍数,也有不是3的倍数,并且是较大的数)让学生进行确定,这样可使学生对3的倍数的特征进一步得到巩固;当学生熟练掌握3的倍数的特征时,教师话峰一转,你们能归纳出9的倍数的特征吗学生在教师这一激发下,他们的求知欲兴趣大增,然后教师启学生运用找3的倍数的方法,去找9的倍数的特征,学生会轻而易举地归纳、总结出9的倍数的特征。经过找9的倍数的特征,既巩固了学生学习3的倍数的特征,还使学生的知识面扩大,到达知识的巩固和迁移的目的。

  3、当学生掌握了2、5和3的倍数的特征时,教师这时应引导学生进一步归纳、总结,把这三个特征综合,从而得出同时是2、3和5的倍数的特征。

  经过这样的教学,让学生真正感受到“灵活”两字,并且能把知识面向纵横方向发展。

《倍数和因数》的教学反思15

  因数与倍数是小学数学中的重要概念,是数学学习的基础。在教学过程中,我们需要注意以下几点:

  一、因数与倍数的概念

  因数是指能整除一个数的数,如6的因数为1、2、3、6。倍数是指一个数的n倍,如6的倍数有6、12、18、24等。需注意让学生区分因数和倍数的概念。

  二、因数与倍数的应用

  因数和倍数有很多实际应用,如在约数分解、最大公因数和最小公倍数等问题中都需要用到因数和倍数。在教学过程中,可以通过实际问题的解决让学生更好地理解这些概念。

  三、因数与倍数的记忆

  因数和倍数的记忆是数学学习的'基础,通过多做练习和记忆,可以帮助学生更好地掌握这些知识。在教学中可以使用教具和游戏等方式帮助学生记忆因数和倍数,使学习过程更加有趣。

  四、因数与倍数的拓展

  在学生掌握因数和倍数的基本概念后,可以引导学生拓展更多的相关知识,如质因数分解、倍数的性质等,以便更好地应用这些知识。

  因此,在因数和倍数的教学中,我们需要注重基本概念的讲解、实际应用的演示、记忆方法的引导和知识拓展的引导。只有这样,才能使学生更好地掌握因数和倍数的知识,以便更好地应用于实际问题的解决中。

【《倍数和因数》的教学反思】相关文章:

倍数和因数教学反思11-06

(精选)因数和倍数教学反思10-20

倍数和因数教学反思07-20

因数和倍数教学反思06-12

因数和倍数的教学反思02-24

因数和倍数教学反思07-02

《因数和倍数》教学反思11-07

倍数和因数教学反思08-04

因数和倍数教学反思【热门】10-20